This show goes behind the scenes for the tools, techniques, and difficulties associated with the discipline of data engineering. Databases, workflows, automation, and data manipulation are just some of the topics that you will find here.
Support the show!Listen in your favorite app:
FountainHere are shows you might like
One of the perennial challenges posed by data lakes is how to keep them up to date as new data is collected. With the improvements in streaming engines it is now possible to perform all of your data integration in near real time, but it can be challenging to understand the proper processing…
One of the perennial challenges posed by…
20 November 2021 | 00:52:53
The technology for scaling storage and processing of data has gone through massive evolution over the past decade, leaving us with the ability to work with massive datasets at the cost of massive complexity. Nick Schrock created the Dagster framework to help tame that complexity and scale…
The technology for scaling storage and…
20 November 2021 | 01:05:25
The most important gauge of success for a data platform is the level of trust in the accuracy of the information that it provides. In order to build and maintain that trust it is necessary to invest in defining, monitoring, and enforcing data quality metrics. In this episode Michael Harper…
The most important gauge of success for a…
14 November 2021 | 00:58:55
A significant source of friction and wasted effort in building and integrating data management systems is the fragmentation of metadata across various tools. After experiencing the impacts of fragmented metadata and previous attempts at building a solution Suresh Srinivas and Sriharsha…
A significant source of friction and…
10 November 2021 | 01:06:55
Business intelligence is often equated with a collection of dashboards that show various charts and graphs representing data for an organization. What is overlooked in that characterization is the level of complexity and effort that are required to collect and present that information, and…
Business intelligence is often equated…
06 November 2021 | 01:02:00
The precursor to widespread adoption of cloud data warehouses was the creation of customer data platforms. Acting as a centralized repository of information about how your customers interact with your organization they drove a wave of analytics about how to improve products based on actual…
The precursor to widespread adoption of…
05 November 2021 | 01:02:07
The perennial question of data warehousing is how to model the information that you are storing. This has given rise to methods as varied as star and snowflake schemas, data vault modeling, and wide tables. The challenge with many of those approaches is that they are optimized for answering…
The perennial question of data…
29 October 2021 | 01:08:49
Streaming data systems have been growing more capable and flexible over the past few years. Despite this, it is still challenging to build reliable pipelines for stream processing. In this episode Eric Sammer discusses the shortcomings of the current set of streaming engines and how they…
Streaming data systems have been growing…
29 October 2021 | 01:09:32
The market for business intelligence has been going through an evolutionary shift in recent years. One of the driving forces for that change has been the rise of analytics engineering powered by dbt. Lightdash has fully embraced that shift by building an entire open source business…
The market for business intelligence has…
23 October 2021 | 01:06:03
The focus of the past few years has been to consolidate all of the organization’s data into a cloud data warehouse. As a result there have been a number of trends in data that take advantage of the warehouse as a single focal point. Among those trends is the advent of operational…
The focus of the past few years has been…
21 October 2021 | 01:09:06