Managing The Machine Learning Lifecycle - Episode 84

Building a machine learning model can be difficult, but that is only half of the battle. Having a perfect model is only useful if you are able to get it into production. In this episode Stepan Pushkarev, founder of Hydrosphere, explains why deploying and maintaining machine learning projects in production is different from regular software projects and the challenges that they bring. He also describes the Hydrosphere platform, and how the different components work together to manage the full lifecycle of model deployment and retraining. This was a useful...

Play Episode

Evolving An ETL Pipeline For Better Productivity - Episode 83

Building an ETL pipeline can be a significant undertaking, and sometimes it needs to be rebuilt when a better option becomes available. In this episode Aaron Gibralter, director of engineering at Greenhouse, joins Raghu Murthy, founder and CEO of DataCoral, to discuss the journey that he and his team took from an in-house ETL pipeline built out of open source components onto a paid service. He explains how their original implementation was built, why they decided to migrate to a paid service, and how they made that transition. He...

Play Episode

Data Lineage For Your Pipelines - Episode 82

Some problems in data are well defined and benefit from a ready-made set of tools. For everything else, there's Pachyderm, the platform for data science that is built to scale. In this episode Joe Doliner, CEO and co-founder, explains how Pachyderm started as an attempt to make data provenance easier to track, how the platform is architected and used today, and examples of how the underlying principles manifest in the workflows of data engineers and data scientists as they collaborate on data projects. In addition to all of that...

Play Episode

Build Your Data Analytics Like An Engineer - Episode 81

In recent years the traditional approach to building data warehouses has shifted from transforming records before loading, to transforming them afterwards. As a result, the tooling for those transformations needs to be reimagined. The data build tool (dbt) is designed to bring battle tested engineering practices to your analytics pipelines. By providing an opinionated set of best practices it simplifies collaboration and boosts confidence in your data teams. In this episode Drew Banin, creator of dbt, explains how it got started, how it is designed, and how you can...

Play Episode

Using FoundationDB As The Bedrock For Your Distributed Systems - Episode 80

The database market continues to expand, offering systems that are suited to virtually every use case. But what happens if you need something customized to your application? FoundationDB is a distributed key-value store that provides the primitives that you need to build a custom database platform. In this episode Ryan Worl explains how it is architected, how to use it for your applications, and provides examples of system design patterns that can be built on top of it. If you need a foundation for your distributed systems, then FoundationDB...

Play Episode

Join The Mailing List