This show goes behind the scenes for the tools, techniques, and difficulties associated with the discipline of data engineering. Databases, workflows, automation, and data manipulation are just some of the topics that you will find here.
Support the show!Listen in your favorite app:
FountainHere are shows you might like
Data has permeated every aspect of our lives and the products that we interact with. As a result, end users and customers have come to expect interactions and updates with services and analytics to be fast and up to date. In this episode Shruti Bhat gives her view on the state of the…
Data has permeated every aspect of our…
22 August 2022 | 01:06:20
The position of Chief Data Officer (CDO) is relatively new in the business world and has not been universally adopted. As a result, not everyone understands what the responsibilities of the role are, when you need one, and how to hire for it. In this episode Tracy Daniels, CDO of Truist,…
The position of Chief Data Officer (CDO)…
22 August 2022 | 00:47:11
Data engineers have typically left the process of data labeling to data scientists or other roles because of its nature as a manual and process heavy undertaking, focusing instead on building automation and repeatable systems. Watchful is a platform to make labeling a repeatable and…
Data engineers have typically left the…
14 August 2022 | 01:20:29
Data is useless if it isn’t being used, and you can’t use it if you don’t know where it is. Data catalogs were the first solution to this problem, but they are only helpful if you know what you are looking for. In this episode Shinji Kim discusses the challenges of data…
Data is useless if it isn’t being…
14 August 2022 | 00:53:24
Data mesh is a frequent topic of conversation in the data community, with many debates about how and when to employ this architectural pattern. The team at AgileLab have first-hand experience helping large enterprise organizations evaluate and implement their own data mesh strategies. In…
Data mesh is a frequent topic of…
06 August 2022 | 00:48:31
The optimal format for storage and retrieval of data is dependent on how it is going to be used. For analytical systems there are decades of investment in data warehouses and various modeling techniques. For machine learning applications relational models require additional processing to be…
The optimal format for storage and…
06 August 2022 | 00:58:52
Exploratory data analysis works best when the feedback loop is fast and iterative. This is easy to achieve when you are working on small datasets, but as they scale up beyond what can fit on a single machine those short iterations quickly become long and tedious. The Arkouda project is a…
Exploratory data analysis works best when…
31 July 2022 | 00:40:37
Data lineage is the roadmap for your data platform, providing visibility into all of the dependencies for any report, machine learning model, or data warehouse table that you are working with. Because of its centrality to your data systems it is valuable for debugging, governance,…
Data lineage is the roadmap for your data…
31 July 2022 | 01:05:18
The current stage of evolution in the data management ecosystem has resulted in domain and use case specific orchestration capabilities being incorporated into various tools. This complicates the work involved in making end-to-end workflows visible and integrated. Dagster has invested in…
The current stage of evolution in the…
24 July 2022 | 00:58:14
Data engineering is a difficult job, requiring a large number of skills that often don’t overlap. Any effort to understand how to start a career in the role has required stitching together information from a multitude of resources that might not all agree with each other. In order to…
Data engineering is a difficult job,…
24 July 2022 | 01:01:02