Data Engineering Podcast


This show goes behind the scenes for the tools, techniques, and difficulties associated with the discipline of data engineering. Databases, workflows, automation, and data manipulation are just some of the topics that you will find here.

Support the show!

18 December 2017

SiriDB: Scalable Open Source Timeseries Database with Jeroen van der Heijden - Episode 11 - E11

Rewind 10 seconds
1X
Skip 30 seconds ahead
0:00/0:00

Share on social media:


Summary

Time series databases have long been the cornerstone of a robust metrics system, but the existing options are often difficult to manage in production. In this episode Jeroen van der Heijden explains his motivation for writing a new database, SiriDB, the challenges that he faced in doing so, and how it works under the hood.

Preamble

  • Hello and welcome to the Data Engineering Podcast, the show about modern data infrastructure
  • When you’re ready to launch your next project you’ll need somewhere to deploy it. Check out Linode at dataengineeringpodcast.com/linode and get a $20 credit to try out their fast and reliable Linux virtual servers for running your data pipelines or trying out the tools you hear about on the show.
  • Continuous delivery lets you get new features in front of your users as fast as possible without introducing bugs or breaking production and GoCD is the open source platform made by the people at Thoughtworks who wrote the book about it. Go to dataengineeringpodcast.com/gocd to download and launch it today. Enterprise add-ons and professional support are available for added peace of mind.
  • Go to dataengineeringpodcast.com to subscribe to the show, sign up for the newsletter, read the show notes, and get in touch.
  • You can help support the show by checking out the Patreon page which is linked from the site.
  • To help other people find the show you can leave a review on iTunes, or Google Play Music, and tell your friends and co-workers
  • Your host is Tobias Macey and today I’m interviewing Jeroen van der Heijden about SiriDB, a next generation time series database

Interview

  • Introduction
  • How did you get involved in the area of data engineering?
  • What is SiriDB and how did the project get started?
    • What was the inspiration for the name?


  • What was the landscape of time series databases at the time that you first began work on Siri?

  • How does Siri compare to other time series databases such as InfluxDB, Timescale, KairosDB, etc.?

  • What do you view as the competition for Siri?

  • How is the server architected and how has the design evolved over the time that you have been working on it?

  • Can you describe how the clustering mechanism functions?

    • Is it possible to create pools with more than two servers?


  • What are the failure modes for SiriDB and where does it fall on the spectrum for the CAP theorem?

  • In the documentation it mentions needing to specify the retention period for the shards when creating a database. What is the reasoning for that and what happens to the individual metrics as they age beyond that time horizon?

  • One of the common difficulties when using a time series database in an operations context is the need for high cardinality of the metrics. How are metrics identified in Siri and is there any support for tagging?

  • What have been the most challenging aspects of building Siri?

  • In what situations or environments would you advise against using Siri?

Contact Info

Parting Question

  • From your perspective, what is the biggest gap in the tooling or technology for data management today?

Links

The intro and outro music is from The Hug by The Freak Fandango Orchestra / CC BY-SA

Support Data Engineering Podcast


Share on social media:


Listen in your favorite app:



More options

Here are shows you might like

See show recommendations
AI Engineering Podcast
Tobias Macey
The Python Podcast.__init__
Tobias Macey