Data Engineering Podcast


This show goes behind the scenes for the tools, techniques, and difficulties associated with the discipline of data engineering. Databases, workflows, automation, and data manipulation are just some of the topics that you will find here.

Support the show!

27 October 2025

Beyond the Perimeter: Practical Patterns for Fine‑Grained Data Access - E486

Rewind 10 seconds
1X
Skip 30 seconds ahead
0:00/0:00

Share on social media:


Summary
In this episode of the Data Engineering Podcast Matt Topper, president of UberEther, talks about the complex challenge of identity, credentials, and access control in modern data platforms. With the shift to composable ecosystems, integration burdens have exploded, fracturing governance and auditability across warehouses, lakes, files, vector stores, and streaming systems. Matt shares practical solutions, including propagating user identity via JWTs, externalizing policy with engines like OPA/Rego and Cedar, and using database proxies for native row/column security. He also explores catalog-driven governance, lineage-based label propagation, and OpenTDF for binding policies to data objects. The conversation covers machine-to-machine access, short-lived credentials, workload identity, and constraining access by interface choke points, as well as lessons from Zanzibar-style policy models and the human side of enforcement. Matt emphasizes the need for trust composition - unifying provenance, policy, and identity context - to answer questions about data access, usage, and intent across the entire data path.

Announcements
  • Hello and welcome to the Data Engineering Podcast, the show about modern data management
  • Data teams everywhere face the same problem: they're forcing ML models, streaming data, and real-time processing through orchestration tools built for simple ETL. The result? Inflexible infrastructure that can't adapt to different workloads. That's why Cash App and Cisco rely on Prefect. Cash App's fraud detection team got what they needed - flexible compute options, isolated environments for custom packages, and seamless data exchange between workflows. Each model runs on the right infrastructure, whether that's high-memory machines or distributed compute. Orchestration is the foundation that determines whether your data team ships or struggles. ETL, ML model training, AI Engineering, Streaming - Prefect runs it all from ingestion to activation in one platform. Whoop and 1Password also trust Prefect for their data operations. If these industry leaders use Prefect for critical workflows, see what it can do for you at dataengineeringpodcast.com/prefect.
  • Data migrations are brutal. They drag on for months—sometimes years—burning through resources and crushing team morale. Datafold's AI-powered Migration Agent changes all that. Their unique combination of AI code translation and automated data validation has helped companies complete migrations up to 10 times faster than manual approaches. And they're so confident in their solution, they'll actually guarantee your timeline in writing. Ready to turn your year-long migration into weeks? Visit dataengineeringpodcast.com/datafold today for the details.
  • Composable data infrastructure is great, until you spend all of your time gluing it together. Bruin is an open source framework, driven from the command line, that makes integration a breeze. Write Python and SQL to handle the business logic, and let Bruin handle the heavy lifting of data movement, lineage tracking, data quality monitoring, and governance enforcement. Bruin allows you to build end-to-end data workflows using AI, has connectors for hundreds of platforms, and helps data teams deliver faster. Teams that use Bruin need less engineering effort to process data and benefit from a fully integrated data platform. Go to dataengineeringpodcast.com/bruin today to get started. And for dbt Cloud customers, they'll give you $1,000 credit to migrate to Bruin Cloud.
  • Your host is Tobias Macey and today I'm interviewing Matt Topper about the challenges of managing identity and access controls in the context of data systems
Interview
  • Introduction
  • How did you get involved in the area of data management?
  • The data ecosystem is a uniquely challenging space for creating and enforcing technical controls for identity and access control. What are the key considerations for designing a strategy for addressing those challenges?
  • For data acess the off-the-shelf options are typically on either extreme of too coarse or too granular in their capabilities. What do you see as the major factors that contribute to that situation?
  • Data governance policies are often used as the primary means of identifying what data can be accesssed by whom, but translating that into enforceable constraints is often left as a secondary exercise. How can we as an industry make that a more manageable and sustainable practice?
  • How can the audit trails that are generated by data systems be used to inform the technical controls for identity and access?
  • How can the foundational technologies of our data platforms be improved to make identity and authz a more composable primitive?
  • How does the introduction of streaming/real-time data ingest and delivery complicate the challenges of security controls?
  • What are the most interesting, innovative, or unexpected ways that you have seen data teams address ICAM?
  • What are the most interesting, unexpected, or challenging lessons that you have learned while working on ICAM?
  • What are the aspects of ICAM in data systems that you are paying close attention to?
    • What are your predictions for the industry adoption or enforcement of those controls?
Contact Info
Parting Question
  • From your perspective, what is the biggest gap in the tooling or technology for data management today?
Closing Announcements
  • Thank you for listening! Don't forget to check out our other shows. Podcast.__init__ covers the Python language, its community, and the innovative ways it is being used. The AI Engineering Podcast is your guide to the fast-moving world of building AI systems.
  • Visit the site to subscribe to the show, sign up for the mailing list, and read the show notes.
  • If you've learned something or tried out a project from the show then tell us about it! Email hosts@dataengineeringpodcast.com with your story.
Links
The intro and outro music is from The Hug by The Freak Fandango Orchestra / CC BY-SA

Share on social media:


Listen in your favorite app:



More options

Here are shows you might like

See show recommendations
AI Engineering Podcast
Tobias Macey
The Python Podcast.__init__
Tobias Macey

© 2025 Boundless Notions, LLC.
EPISODE SPONSORS Prefect
Prefect

Your data stack has evolved but your orchestration hasn't. While you've added ML models, streaming pipelines, and real-time analytics, you're still forcing them through tools designed for yesterday's simple ETL jobs. Today, companies like Cash App, Whoop, and 1Password trust Prefect to orchestrate their entire data lifecycle. Your ETL, ML training, streaming, everything from ingestion to activation in one platform. Stop building orchestration logic and start shipping AI-ready data products. Visit https://prefec.tv/4nGV4yv to get started for free.

https://prefec.tv/4nGV4yv
Bruin
Bruin

Composable data infrastructure is great, until you spend all of your time gluing it together. Bruin is an open source framework, driven from the command line, that makes integration a breeze. Write Python and SQL to handle the business logic, and let Bruin handle the heavy lifting of data movement, lineage tracking, data quality monitoring, and governance enforcement. Bruin allows you to build end-to-end data workflows using AI, has connectors for hundreds of platforms, and helps data teams deliver faster. Teams that use Bruin need less engineering effort to process data and benefit from a fully integrated data platform. And for dbt Cloud customers, they'll give you $1,000 credit to migrate to Bruin Cloud.

https://getbruin.com/?utm_source=dataengineeringpodcast
Datafold
Datafold

Data migrations are brutal. They drag on for months—sometimes years—burning through resources and crushing team morale. Datafold's AI-powered Migration Agent changes all that. Their unique combination of AI code translation and automated data validation has helped companies complete migrations up to 10 times faster than manual approaches. And they're so confident in their solution, they'll actually guarantee your timeline in writing. Ready to turn your year-long migration into weeks? Visit dataengineeringpodcast.com/datafold today for the details.

https://get.datafold.com/monitors-blog-de-podcast