Alumni Of AirBnB's Early Years Reflect On What They Learned About Building Data Driven Organizations - Episode 319

Summary

AirBnB pioneered a number of the organizational practices that have become the goal of modern data teams. Out of that culture a number of successful businesses were created to provide the tools and methods to a broader audience. In this episode several almuni of AirBnB’s formative years who have gone on to found their own companies join the show to reflect on their shared successes, missed opportunities, and lessons learned.

Sifflet is a Full Data Stack Observability platform acting as an overseeing layer to the Data Stack, ensuring that data is reliable from ingestion to consumption. Whether the data is in transit or at rest, Sifflet is able to detect data quality anomalies, assess business impact, identify the root cause, and alert data teams’ on their preferred channels. All thanks to 50+ quality checks, extensive column-level lineage, and 20+ connectors across the Data Stack.

In addition, data discovery is made easy through Sifflet’s information-rich data catalog with a powerful search engine and real-time health statuses. Listeners of the podcast will get 2000$ to use as platform credits when signing up to use Sifflet. We also offer a 2-week free trial.

Go to dataengineeringpodcast.com/sifflet to find out more.


Select Star LogoSo now your modern data stack is set up. How is everyone going to find the data they need, and understand it? Select Star is a data discovery platform that automatically analyzes & documents your data.

From analyzing your metadata, query logs, and dashboard activities, Select Star will automatically document your datasets. For every table in Select Star, you can find out where the data originated from, which dashboards are built on top of it, who’s using it in the company, and how they’re using it, all the way down to the SQL queries. Best of all, it’s simple to set up, and easy for both engineering and operations teams to use.

With Select Star’s data catalog, a single source of truth in data is built in minutes, even across thousands of datasets.

Try it out for free at dataengineeringpodcast.com/selectstar. If you’re a data engineering podcast subscriber, we’ll double the length of your free trial and send you a swag package when you continue on a paid plan.


Your data platform needs to be scalable, fault tolerant, and performant, which means that you need the same from your cloud provider. Linode has been powering production systems for over 17 years, and now they’ve launched a fully managed Kubernetes platform. With the combined power of the Kubernetes engine for flexible and scalable deployments, and features like dedicated CPU instances, GPU instances, and object storage you’ve got everything you need to build a bulletproof data pipeline. If you go to dataengineeringpodcast.com/linode today you’ll even get a $100 credit to use on building your own cluster, or object storage, or reliable backups, or… And while you’re there don’t forget to thank them for being a long-time supporter of the Data Engineering Podcast!


Ascend.io logo Ascend.io, the Data Automation Cloud, provides the most advanced automation for data and analytics engineering workloads. Ascend.io unifies the core capabilities of data engineering—data ingestion, transformation, delivery, orchestration, and observability—into a single platform so that data teams deliver 10x faster. With 95% of data teams already at or over capacity, engineering productivity is a top priority for enterprises. Ascend’s Flex-code user interface empowers any member of the data team—from data engineers to data scientists to data analysts—to quickly and easily build and deliver on the data and analytics workloads they need. And with Ascend’s DataAware™ intelligence, data teams no longer spend hours carefully orchestrating brittle data workloads and instead rely on advanced automation to optimize the entire data lifecycle. Ascend.io runs natively on data lakes and warehouses and in AWS, Google Cloud and Microsoft Azure.

Go to dataengineeringpodcast.com/ascend to find out more.

 

 


Announcements

  • Hello and welcome to the Data Engineering Podcast, the show about modern data management
  • When you’re ready to build your next pipeline, or want to test out the projects you hear about on the show, you’ll need somewhere to deploy it, so check out our friends at Linode. With their new managed database service you can launch a production ready MySQL, Postgres, or MongoDB cluster in minutes, with automated backups, 40 Gbps connections from your application hosts, and high throughput SSDs. Go to dataengineeringpodcast.com/linode today and get a $100 credit to launch a database, create a Kubernetes cluster, or take advantage of all of their other services. And don’t forget to thank them for their continued support of this show!
  • Data stacks are becoming more and more complex. This brings infinite possibilities for data pipelines to break and a host of other issues, severely deteriorating the quality of the data and causing teams to lose trust. Sifflet solves this problem by acting as an overseeing layer to the data stack – observing data and ensuring it’s reliable from ingestion all the way to consumption. Whether the data is in transit or at rest, Sifflet can detect data quality anomalies, assess business impact, identify the root cause, and alert data teams’ on their preferred channels. All thanks to 50+ quality checks, extensive column-level lineage, and 20+ connectors across the Data Stack. In addition, data discovery is made easy through Sifflet’s information-rich data catalog with a powerful search engine and real-time health statuses. Listeners of the podcast will get $2000 to use as platform credits when signing up to use Sifflet. Sifflet also offers a 2-week free trial. Find out more at dataengineeringpodcast.com/sifflet today!
  • The biggest challenge with modern data systems is understanding what data you have, where it is located, and who is using it. Select Star’s data discovery platform solves that out of the box, with an automated catalog that includes lineage from where the data originated, all the way to which dashboards rely on it and who is viewing them every day. Just connect it to your database/data warehouse/data lakehouse/whatever you’re using and let them do the rest. Go to dataengineeringpodcast.com/selectstar today to double the length of your free trial and get a swag package when you convert to a paid plan.
  • Data teams are increasingly under pressure to deliver. According to a recent survey by Ascend.io, 95% in fact reported being at or over capacity. With 72% of data experts reporting demands on their team going up faster than they can hire, it’s no surprise they are increasingly turning to automation. In fact, while only 3.5% report having current investments in automation, 85% of data teams plan on investing in automation in the next 12 months. 85%!!! That’s where our friends at Ascend.io come in. The Ascend Data Automation Cloud provides a unified platform for data ingestion, transformation, orchestration, and observability. Ascend users love its declarative pipelines, powerful SDK, elegant UI, and extensible plug-in architecture, as well as its support for Python, SQL, Scala, and Java. Ascend automates workloads on Snowflake, Databricks, BigQuery, and open source Spark, and can be deployed in AWS, Azure, or GCP. Go to dataengineeringpodcast.com/ascend and sign up for a free trial. If you’re a data engineering podcast listener, you get credits worth $5,000 when you become a customer.
  • Your host is Tobias Macey and today I’m interviewing Lindsay Pettingill Chetan Sharma, Swaroop Jagadish, Maxime Beauchemin, and Nick Handel about the lessons that they learned in their time at AirBnB and how they are carrying that forward to their respective companies

Interview

  • Introduction
  • How did you get involved in the area of data management?
  • You all worked at AirBnB in similar time frames and then went on to found data-focused companies that are finding success in their respective categories. Do you consider it an outgrowth of the specific company culture/work involved or a curiosity of the moment in time for the data industry that led you each in that direction?
  • What are the elements of AirBnB’s data culture that you feel were done right?
    • What do you see as the critical decisions/inflection points in the company’s growth that led you down that path?
  • Every journey has its detours and dead-ends. What are the mistakes that were made (individual and collective) that were most instructive for you?
  • What about that experience and other experiences led you each to go our respective directions with data startups?
    • Was your motivation to start a company addressing the work that you did at AirBnB due to the desire to build on existing success, or the need to fix a nagging frustration?
  • What are the critical lessons for data teams that you are focused on teaching to engineers inside and outside your company?
    • What are your predictions for the next 5 years of data?
  • What are the most interesting, unexpected, or challenging lessons that you have learned while working on translating your experiences at AirBnB into successful products?

Contact Info

Parting Question

  • From your perspective, what is the biggest gap in the tooling or technology for data management today?

Closing Announcements

  • Thank you for listening! Don’t forget to check out our other shows. Podcast.__init__ covers the Python language, its community, and the innovative ways it is being used. The Machine Learning Podcast helps you go from idea to production with machine learning.
  • Visit the site to subscribe to the show, sign up for the mailing list, and read the show notes.
  • If you’ve learned something or tried out a project from the show then tell us about it! Email hosts@dataengineeringpodcast.com) with your story.
  • To help other people find the show please leave a review on Apple Podcasts and tell your friends and co-workers

Links

The intro and outro music is from The Hug by The Freak Fandango Orchestra / CC BY-SA

Liked it? Take a second to support the Data Engineering Podcast on Patreon!