strongDM

Serverless Data Pipelines On DataCoral - Episode 76

How much time do you spend maintaining your data pipeline? How much end user value does that provide? Raghu Murthy founded DataCoral as a way to abstract the low level details of ETL so that you can focus on the actual problem that you are trying to solve. In this episode he explains his motivation for building the DataCoral platform, how it is leveraging serverless computing, the challenges of delivering software as a service to customer environments, and the architecture that he has designed to make batch data management easier to work with. This was a fascinating conversation with someone who has spent his entire career working on simplifying complex data problems.

Read More

Why Analytics Projects Fail And What To Do About It - Episode 75

Analytics projects fail all the time, resulting in lost opportunities and wasted resources. There are a number of factors that contribute to that failure and not all of them are under our control. However, many of them are and as data engineers we can help to keep our projects on the path to success. Eugene Khazin is the CEO of PrimeTSR where he is tasked with rescuing floundering analytics efforts and ensuring that they provide value to the business. In this episode he reflects on the ways that data projects can be structured to provide a higher probability of success and utility, how data engineers can get throughout the project lifecycle, and how to salvage a failed project so that some value can be gained from the effort.

Read More

Building An Enterprise Data Fabric At CluedIn - Episode 74

Data integration is one of the most challenging aspects of any data platform, especially as the variety of data sources and formats grow. Enterprise organizations feel this acutely due to the silos that occur naturally across business units. The CluedIn team experienced this issue first-hand in their previous roles, leading them to build a business aimed at building a managed data fabric for the enterprise. In this episode Tim Ward, CEO of CluedIn, joins me to explain how their platform is architected, how they manage the task of integrating with third-party platforms, automating entity extraction and master data management, and the work of providing multiple views of the same data for different use cases. I highly recommend listening closely to his explanation of how they manage consistency of the data that they process across different storage backends.

Read More

A DataOps vs DevOps Cookoff In The Data Kitchen - Episode 73

Delivering a data analytics project on time and with accurate information is critical to the success of any business. DataOps is a set of practices to increase the probability of success by creating value early and often, and using feedback loops to keep your project on course. In this episode Chris Bergh, head chef of Data Kitchen, explains how DataOps differs from DevOps, how the industry has begun adopting DataOps, and how to adopt an agile approach to building your data platform.

Read More

Customer Analytics At Scale With Segment - Episode 72

Customer analytics is a problem domain that has given rise to its own industry. In order to gain a full understanding of what your users are doing and how best to serve them you may need to send data to multiple services, each with their own tracking code or APIs. To simplify this process and allow your non-engineering employees to gain access to the information they need to do their jobs Segment provides a single interface for capturing data and routing it to all of the places that you need it. In this interview Segment CTO and co-founder Calvin French-Owen explains how the company got started, how it manages to multiplex data streams from multiple sources to multiple destinations, and how it can simplify your work of gaining visibility into how your customers are engaging with your business.

Read More

Deep Learning For Data Engineers - Episode 71

Deep learning is the latest class of technology that is gaining widespread interest. As data engineers we are responsible for building and managing the platforms that power these models. To help us understand what is involved, we are joined this week by Thomas Henson. In this episode he shares his experiences experimenting with deep learning, what data engineers need to know about the infrastructure and data requirements to power the models that your team is building, and how it can be used to supercharge our ETL pipelines.

Read More