Streaming

Accelerate Your Machine Learning With The StreamSQL Feature Store - Episode 137

Machine learning is a process driven by iteration and experimentation which requires fast and easy access to relevant features of the data being processed. In order to reduce friction in the process of developing and delivering models there has been a recent trend toward building a dedicated feature. In this episode Simba Khadder discusses his work at StreamSQL building a feature store to make creation, discovery, and monitoring of features fast and easy to manage. He describes the architecture of the system, the benefits of streaming data for machine learning, and how a feature store provides a useful interface between data engineers and machine learning engineers to reduce communication overhead.

Read More

Data Management Trends From An Investor Perspective - Episode 136

The landscape of data management and processing is rapidly changing and evolving. There are certain foundational elements that have remained steady, but as the industry matures new trends emerge and gain prominence. In this episode Astasia Myers of Redpoint Ventures shares her perspective as an investor on which categories she is paying particular attention to for the near to medium term. She discusses the work being done to address challenges in the areas of data quality, observability, discovery, and streaming. This is a useful conversation to gain a macro perspective on where businesses are looking to improve their capabilities to work with data.

Read More

StreamNative Brings Streaming Data To The Cloud Native Landscape With Pulsar - Episode 132

There have been several generations of platforms for managing streaming data, each with their own strengths and weaknesses, and different areas of focus. Pulsar is one of the recent entrants which has quickly gained adoption and an impressive set of capabilities. In this episode Sijie Guo discusses his motivations for spending so much of his time and energy on contributing to the project and growing the community. His most recent endeavor at StreamNative is focused on combining the capabilities of Pulsar with the cloud native movement to make it easier to build and scale real time messaging systems with built in event processing capabilities. This was a great conversation about the strengths of the Pulsar project, how it has evolved in recent years, and some of the innovative ways that it is being used. Pulsar is a well engineered and robust platform for building the core of any system that relies on durable access to easily scalable streams of data.

Read More

Building Real Time Applications On Streaming Data With Eventador - Episode 129

Modern applications frequently require access to real-time data, but building and maintaining the systems that make that possible is a complex and time consuming endeavor. Eventador is a managed platform designed to let you focus on using the data that you collect, without worrying about how to make it reliable. In this episode Eventador Founder and CEO Kenny Gorman describes how the platform is architected, the challenges inherent to managing reliable streams of data, the simplicity offered by a SQL interface, and the interesting projects that his customers have built on top of it. This was an interesting inside look at building a business on top of open source stream processing frameworks and how to reduce the burden on end users.

Read More

Easier Stream Processing On Kafka With ksqlDB - Episode 122

Building applications on top of unbounded event streams is a complex endeavor, requiring careful integration of multiple disparate systems that were engineered in isolation. The ksqlDB project was created to address this state of affairs by building a unified layer on top of the Kafka ecosystem for stream processing. Developers can work with the SQL constructs that they are familiar with while automatically getting the durability and reliability that Kafka offers. In this episode Michael Drogalis, product manager for ksqlDB at Confluent, explains how the system is implemented, how you can use it for building your own stream processing applications, and how it fits into the lifecycle of your data infrastructure. If you have been struggling with building services on low level streaming interfaces then give this episode a listen and try it out for yourself.

Read More

Data Infrastructure Automation For Private SaaS At Snowplow - Episode 120

One of the biggest challenges in building reliable platforms for processing event pipelines is managing the underlying infrastructure. At Snowplow Analytics the complexity is compounded by the need to manage multiple instances of their platform across customer environments. In this episode Josh Beemster, the technical operations lead at Snowplow, explains how they manage automation, deployment, monitoring, scaling, and maintenance of their streaming analytics pipeline for event data. He also shares the challenges they face in supporting multiple cloud environments and the need to integrate with existing customer systems. If you are daunted by the needs of your data infrastructure then it’s worth listening to how Josh and his team are approaching the problem.

Read More

Change Data Capture For All Of Your Databases With Debezium - Episode 114

Databases are useful for inspecting the current state of your application, but inspecting the history of that data can get messy without a way to track changes as they happen. Debezium is an open source platform for reliable change data capture that you can use to build supplemental systems for everything from maintaining audit trails to real-time updates of your data warehouse. In this episode Gunnar Morling and Randall Hauch explain why it got started, how it works, and some of the myriad ways that you can use it. If you have ever struggled with implementing your own change data capture pipeline, or understanding when it would be useful then this episode is for you.

Read More

Building The Materialize Engine For Interactive Streaming Analytics In SQL - Episode 112

Transactional databases used in applications are optimized for fast reads and writes with relatively simple queries on a small number of records. Data warehouses are optimized for batched writes and complex analytical queries. Between those use cases there are varying levels of support for fast reads on quickly changing data. To address that need more completely the team at Materialize has created an engine that allows for building queryable views of your data as it is continually updated from the stream of changes being generated by your applications. In this episode Frank McSherry, chief scientist of Materialize, explains why it was created, what use cases it enables, and how it works to provide fast queries on continually updated data.

Read More

Navigating Boundless Data Streams With The Swim Kernel - Episode 98

The conventional approach to analytics involves collecting large amounts of data that can be cleaned, followed by a separate step for analysis and interpretation. Unfortunately this strategy is not viable for handling real-time, real-world use cases such as traffic management or supply chain logistics. In this episode Simon Crosby, CTO of Swim Inc., explains how the SwimOS kernel and the enterprise data fabric built on top of it enable brand new use cases for instant insights. This was an eye opening conversation about how stateful computation of data streams from edge devices can reduce cost and complexity as compared to batch oriented workflows.

Read More

Building A Reliable And Performant Router For Observability Data - Episode 97

The first stage in every data project is collecting information and routing it to a storage system for later analysis. For operational data this typically means collecting log messages and system metrics. Often a different tool is used for each class of data, increasing the overall complexity and number of moving parts. The engineers at Timber.io decided to build a new tool in the form of Vector that allows for processing both of these data types in a single framework that is reliable and performant. In this episode Ben Johnson and Luke Steensen explain how the project got started, how it compares to other tools in this space, and how you can get involved in making it even better.

Read More