Real Time

Adopting Real-Time Data At Organizations Of Every Size - Episode 347

The term “real-time data” brings with it a combination of excitement, uncertainty, and skepticism. The promise of insights that are always accurate and up to date is appealing to organizations, but the technical realities to make it possible have been complex and expensive. In this episode Arjun Narayan explains how the technical barriers to adopting real-time data in your analytics and applications have become surmountable by organizations of all sizes.

Read More

Speeding Up The Time To Insight For Supply Chains And Logistics With The Pathway Database That Thinks - Episode 334

Logistics and supply chains are under increased stress and scrutiny in recent years. In order to stay ahead of customer demands, businesses need to be able to react quickly and intelligently to changes, which requires fast and accurate insights into their operations. Pathway is a streaming database engine that embeds artificial intelligence into the storage, with functionality designed to support the spatiotemporal data that is crucial for shipping and logistics. In this episode Adrian Kosowski explains how the Pathway product got started, how its design simplifies the creation of data products that support supply chain operations, and how developers can help to build an ecosystem of applications that allow businesses to accelerate their time to insight.

Read More

An Exploration Of The Expectations, Ecosystem, and Realities Of Real-Time Data Applications - Episode 317

Data has permeated every aspect of our lives and the products that we interact with. As a result, end users and customers have come to expect interactions and updates with services and analytics to be fast and up to date. In this episode Shruti Bhat gives her view on the state of the ecosystem for real-time data and the work that she and her team at Rockset is doing to make it easier for engineers to build those experiences.

Read More

Accelerate Your Embedded Analytics With Apache Pinot - Episode 273

Data and analytics are permeating every system, including customer-facing applications. The introduction of embedded analytics to an end-user product creates a significant shift in requirements for your data layer. The Pinot OLAP datastore was created for this purpose, optimizing for low latency queries on rapidly updating datasets with highly concurrent queries. In this episode Kishore Gopalakrishna and Xiang Fu explain how it is able to achieve those characteristics, their work at StarTree to make it more easily available, and how you can start using it for your own high throughput data workloads today.

Read More

Making Analytical APIs Fast With Tinybird - Episode 185

Building an API for real-time data is a challenging project. Making it robust, scalable, and fast is a full time job. The team at Tinybird wants to make it easy to turn a continuous stream of data into a production ready API or data product. In this episode CEO Jorge Sancha explains how they have architected their system to handle high data throughput and fast response times, and why they have invested heavily in Clickhouse as the core of their platform. This is a great conversation about the challenges of building a maintainable business from a technical and product perspective.

Read More

Real World Change Data Capture At Datacoral - Episode 177

The world of business is becoming increasingly dependent on information that is accurate up to the minute. For analytical systems, the only way to provide this reliably is by implementing change data capture (CDC). Unfortunately, this is a non-trivial undertaking, particularly for teams that don’t have extensive experience working with streaming data and complex distributed systems. In this episode Raghu Murthy, founder and CEO of Datacoral, does a deep dive on how he and his team manage change data capture pipelines in production.

Read More

Building Real Time Applications On Streaming Data With Eventador - Episode 129

Modern applications frequently require access to real-time data, but building and maintaining the systems that make that possible is a complex and time consuming endeavor. Eventador is a managed platform designed to let you focus on using the data that you collect, without worrying about how to make it reliable. In this episode Eventador Founder and CEO Kenny Gorman describes how the platform is architected, the challenges inherent to managing reliable streams of data, the simplicity offered by a SQL interface, and the interesting projects that his customers have built on top of it. This was an interesting inside look at building a business on top of open source stream processing frameworks and how to reduce the burden on end users.

Read More

Building The DataDog Platform For Processing Timeseries Data At Massive Scale - Episode 113

DataDog is one of the most successful companies in the space of metrics and monitoring for servers and cloud infrastructure. In order to support their customers, they need to capture, process, and analyze massive amounts of timeseries data with a high degree of uptime and reliability. Vadim Semenov works on their data engineering team and joins the podcast in this episode to discuss the challenges that he works through, the systems that DataDog has built to power their business, and how their teams are organized to allow for rapid growth and massive scale. Getting an inside look at the companies behind the services we use is always useful, and this conversation was no exception.

Read More

Building A Real Time Event Data Warehouse For Sentry - Episode 108

The team at Sentry has built a platform for anyone in the world to send software errors and events. As they scaled the volume of customers and data they began running into the limitations of their initial architecture. To address the needs of their business and continue to improve their capabilities they settled on Clickhouse as the new storage and query layer to power their business. In this episode James Cunningham and Ted Kaemming describe the process of rearchitecting a production system, what they learned in the process, and some useful tips for anyone else evaluating Clickhouse.

Read More

TimescaleDB: The Timeseries Database Built For SQL And Scale - Episode 65

The past year has been an active one for the timeseries market. New products have been launched, more businesses have moved to streaming analytics, and the team at Timescale has been keeping busy. In this episode the TimescaleDB CEO Ajay Kulkarni and CTO Michael Freedman stop by to talk about their 1.0 release, how the use cases for timeseries data have proliferated, and how they are continuing to simplify the task of processing your time oriented events.

Read More