Building And Managing Data Teams And Data Platforms In Large Organizations With Ashish Mrig - Episode 257

Data engineering is a relatively young and rapidly expanding field, with practitioners having a wide array of experiences as they navigate their careers. Ashish Mrig currently leads the data analytics platform for Wayfair, as well as running a local data engineering meetup. In this episode he shares his career journey, the challenges related to management of data professionals, and the platform design that he and his team have built to power analytics at a large company. He also provides some excellent insights into the factors that play into the build vs. buy decision at different organizational sizes.

Read More

An Introduction To Data And Analytics Engineering For Non-Programmers - Episode 255

Applications of data have grown well beyond the venerable business intelligence dashboards that organizations have relied on for decades. Now it is being used to power consumer facing services, influence organizational behaviors, and build sophisticated machine learning systems. Given this increased level of importance it has become necessary for everyone in the business to treat data as a product in the same way that software applications have driven the early 2000s. In this episode Brian McMillan shares his work on the book “Building Data Products” and how he is working to educate business users and data professionals about the combination of technical, economical, and business considerations that need to be blended for these projects to succeed.

Read More

Data Observability Out Of The Box With Metaplane - Episode 253

Data observability is a set of technical and organizational capabilities related to understanding how your data is being processed and used so that you can proactively identify and fix errors in your workflows. In this episode Metaplane founder Kevin Hu shares his working definition of the term and explains the work that he and his team are doing to cut down on the time to adoption for this new set of practices. He discusses the factors that influenced his decision to start with the data warehouse, the potential shortcomings of that approach, and where he plans to go from there. This is a great exploration of what it means to treat your data platform as a living system and apply state of the art engineering to it.

Read More