Pipelines

Continuously Query Your Time-Series Data Using PipelineDB with Derek Nelson and Usman Masood - Episode 62

Summary

Processing high velocity time-series data in real-time is a complex challenge. The team at PipelineDB has built a continuous query engine that simplifies the task of computing aggregates across incoming streams of events. In this episode Derek Nelson and Usman Masood explain how it is architected, strategies for designing your data flows, how to scale it up and out, and edge cases to be aware of.

Preamble

  • Hello and welcome to the Data Engineering Podcast, the show about modern data management
  • When you’re ready to build your next pipeline, or want to test out the projects you hear about on the show, you’ll need somewhere to deploy it, so check out Linode. With 200Gbit private networking, scalable shared block storage, and a 40Gbit public network, you’ve got everything you need to run a fast, reliable, and bullet-proof data platform. If you need global distribution, they’ve got that covered too with world-wide datacenters including new ones in Toronto and Mumbai. Go to dataengineeringpodcast.com/linode today to get a $20 credit and launch a new server in under a minute.
  • Go to dataengineeringpodcast.com to subscribe to the show, sign up for the mailing list, read the show notes, and get in touch.
  • Join the community in the new Zulip chat workspace at dataengineeringpodcast.com/chat
  • Your host is Tobias Macey and today I’m interviewing Usman Masood and Derek Nelson about PipelineDB, an open source continuous query engine for PostgreSQL

Interview

  • Introduction
  • How did you get involved in the area of data management?
  • Can you start by explaining what PipelineDB is and the motivation for creating it?
    • What are the major use cases that it enables?
    • What are some example applications that are uniquely well suited to the capabilities of PipelineDB?
  • What are the major concepts and components that users of PipelineDB should be familiar with?
  • Given the fact that it is a plugin for PostgreSQL, what level of compatibility exists between PipelineDB and other plugins such as Timescale and Citus?
  • What are some of the common patterns for populating data streams?
  • What are the options for scaling PipelineDB systems, both vertically and horizontally?
    • How much elasticity does the system support in terms of changing volumes of inbound data?
    • What are some of the limitations or edge cases that users should be aware of?
  • Given that inbound data is not persisted to disk, how do you guard against data loss?
    • Is it possible to archive the data in a stream, unaltered, to a separate destination table or other storage location?
    • Can a separate table be used as an input stream?
  • Since the data being processed by the continuous queries is potentially unbounded, how do you approach checkpointing or windowing the data in the continuous views?
  • What are some of the features that you have found to be the most useful which users might initially overlook?
  • What would be involved in generating an alert or notification on an aggregate output that was in some way anomalous?
  • What are some of the most challenging aspects of building continuous aggregates on unbounded data?
  • What have you found to be some of the most interesting, complex, or challenging aspects of building and maintaining PipelineDB?
  • What are some of the most interesting or unexpected ways that you have seen PipelineDB used?
  • When is PipelineDB the wrong choice?
  • What do you have planned for the future of PipelineDB now that you have hit the 1.0 milestone?

Contact Info

Parting Question

  • From your perspective, what is the biggest gap in the tooling or technology for data management today?

Links

The intro and outro music is from The Hug by The Freak Fandango Orchestra / CC BY-SA

Putting Apache Spark Into Action with Jean Georges Perrin - Episode 60

Summary

Apache Spark is a popular and widely used tool for a variety of data oriented projects. With the large array of capabilities, and the complexity of the underlying system, it can be difficult to understand how to get started using it. Jean George Perrin has been so impressed by the versatility of Spark that he is writing a book for data engineers to hit the ground running. In this episode he helps to make sense of what Spark is, how it works, and the various ways that you can use it. He also discusses what you need to know to get it deployed and keep it running in a production environment and how it fits into the overall data ecosystem.

Preamble

  • Hello and welcome to the Data Engineering Podcast, the show about modern data management
  • When you’re ready to build your next pipeline, or want to test out the projects you hear about on the show, you’ll need somewhere to deploy it, so check out Linode. With 200Gbit private networking, scalable shared block storage, and a 40Gbit public network, you’ve got everything you need to run a fast, reliable, and bullet-proof data platform. If you need global distribution, they’ve got that covered too with world-wide datacenters including new ones in Toronto and Mumbai. Go to dataengineeringpodcast.com/linode today to get a $20 credit and launch a new server in under a minute.
  • Go to dataengineeringpodcast.com to subscribe to the show, sign up for the mailing list, read the show notes, and get in touch.
  • Join the community in the new Zulip chat workspace at dataengineeringpodcast.com/chat
  • Your host is Tobias Macey and today I’m interviewing Jean Georges Perrin, author of the upcoming Manning book Spark In Action 2nd Edition, about the ways that Spark is used and how it fits into the data landscape

Interview

  • Introduction
  • How did you get involved in the area of data management?
  • Can you start by explaining what Spark is?
    • What are some of the main use cases for Spark?
    • What are some of the problems that Spark is uniquely suited to address?
    • Who uses Spark?
  • What are the tools offered to Spark users?
  • How does it compare to some of the other streaming frameworks such as Flink, Kafka, or Storm?
  • For someone building on top of Spark what are the main software design paradigms?
    • How does the design of an application change as you go from a local development environment to a production cluster?
  • Once your application is written, what is involved in deploying it to a production environment?
  • What are some of the most useful strategies that you have seen for improving the efficiency and performance of a processing pipeline?
  • What are some of the edge cases and architectural considerations that engineers should be considering as they begin to scale their deployments?
  • What are some of the common ways that Spark is deployed, in terms of the cluster topology and the supporting technologies?
  • What are the limitations of the Spark programming model?
    • What are the cases where Spark is the wrong choice?
  • What was your motivation for writing a book about Spark?
    • Who is the target audience?
  • What have been some of the most interesting or useful lessons that you have learned in the process of writing a book about Spark?
  • What advice do you have for anyone who is considering or currently using Spark?

Contact Info

Parting Question

  • From your perspective, what is the biggest gap in the tooling or technology for data management today?

Book Discount

  • Use the code poddataeng18 to get 40% off of all of Manning’s products at manning.com

Links

The intro and outro music is from The Hug by The Freak Fandango Orchestra / CC BY-SA

Take Control Of Your Web Analytics Using Snowplow With Alexander Dean - Episode 48

Summary

Every business with a website needs some way to keep track of how much traffic they are getting, where it is coming from, and which actions are being taken. The default in most cases is Google Analytics, but this can be limiting when you wish to perform detailed analysis of the captured data. To address this problem, Alex Dean co-founded Snowplow Analytics to build an open source platform that gives you total control of your website traffic data. In this episode he explains how the project and company got started, how the platform is architected, and how you can start using it today to get a clearer view of how your customers are interacting with your web and mobile applications.

Preamble

  • Hello and welcome to the Data Engineering Podcast, the show about modern data management
  • When you’re ready to build your next pipeline you’ll need somewhere to deploy it, so check out Linode. With private networking, shared block storage, node balancers, and a 40Gbit network, all controlled by a brand new API you’ve got everything you need to run a bullet-proof data platform. Go to dataengineeringpodcast.com/linode to get a $20 credit and launch a new server in under a minute.
  • You work hard to make sure that your data is reliable and accurate, but can you say the same about the deployment of your machine learning models? The Skafos platform from Metis Machine was built to give your data scientists the end-to-end support that they need throughout the machine learning lifecycle. Skafos maximizes interoperability with your existing tools and platforms, and offers real-time insights and the ability to be up and running with cloud-based production scale infrastructure instantaneously. Request a demo at dataengineeringpodcast.com/metis-machine to learn more about how Metis Machine is operationalizing data science.
  • Go to dataengineeringpodcast.com to subscribe to the show, sign up for the mailing list, read the show notes, and get in touch.
  • Join the community in the new Zulip chat workspace at dataengineeringpodcast.com/chat
  • This is your host Tobias Macey and today I’m interviewing Alexander Dean about Snowplow Analytics

Interview

  • Introductions
  • How did you get involved in the area of data engineering and data management?
  • What is Snowplow Analytics and what problem were you trying to solve when you started the company?
  • What is unique about customer event data from an ingestion and processing perspective?
  • Challenges with properly matching up data between sources
  • Data collection is one of the more difficult aspects of an analytics pipeline because of the potential for inconsistency or incorrect information. How is the collection portion of the Snowplow stack designed and how do you validate the correctness of the data?
    • Cleanliness/accuracy
  • What kinds of metrics should be tracked in an ingestion pipeline and how do you monitor them to ensure that everything is operating properly?
  • Can you describe the overall architecture of the ingest pipeline that Snowplow provides?
    • How has that architecture evolved from when you first started?
    • What would you do differently if you were to start over today?
  • Ensuring appropriate use of enrichment sources
  • What have been some of the biggest challenges encountered while building and evolving Snowplow?
  • What are some of the most interesting uses of your platform that you are aware of?

Keep In Touch

Parting Question

  • From your perspective, what is the biggest gap in the tooling or technology for data management today?

Links

The intro and outro music is from The Hug by The Freak Fandango Orchestra / CC BY-SA

Building Data Flows In Apache NiFi With Kevin Doran and Andy LoPresto - Episode 39

Summary

Data integration and routing is a constantly evolving problem and one that is fraught with edge cases and complicated requirements. The Apache NiFi project models this problem as a collection of data flows that are created through a self-service graphical interface. This framework provides a flexible platform for building a wide variety of integrations that can be managed and scaled easily to fit your particular needs. In this episode project members Kevin Doran and Andy LoPresto discuss the ways that NiFi can be used, how to start using it in your environment, and plans for future development. They also explained how it fits in the broad landscape of data tools, the interesting and challenging aspects of the project, and how to build new extensions.

Preamble

  • Hello and welcome to the Data Engineering Podcast, the show about modern data management
  • When you’re ready to build your next pipeline you’ll need somewhere to deploy it, so check out Linode. With private networking, shared block storage, node balancers, and a 40Gbit network, all controlled by a brand new API you’ve got everything you need to run a bullet-proof data platform. Go to dataengineeringpodcast.com/linode to get a $20 credit and launch a new server in under a minute.
  • Are you struggling to keep up with customer request and letting errors slip into production? Want to try some of the innovative ideas in this podcast but don’t have time? DataKitchen’s DataOps software allows your team to quickly iterate and deploy pipelines of code, models, and data sets while improving quality. Unlike a patchwork of manual operations, DataKitchen makes your team shine by providing an end to end DataOps solution with minimal programming that uses the tools you love. Join the DataOps movement and sign up for the newsletter at datakitchen.io/de today. After that learn more about why you should be doing DataOps by listening to the Head Chef in the Data Kitchen at dataengineeringpodcast.com/datakitchen
  • Go to dataengineeringpodcast.com to subscribe to the show, sign up for the mailing list, read the show notes, and get in touch.
  • Your host is Tobias Macey and today I’m interviewing Kevin Doran and Andy LoPresto about Apache NiFi

Interview

  • Introduction
  • How did you get involved in the area of data management?
  • Can you start by explaining what NiFi is?
  • What is the motivation for building a GUI as the primary interface for the tool when the current trend is to represent everything as code?
  • How did you get involved with the project?
    • Where does it sit in the broader landscape of data tools?
  • Does the data that is processed by NiFi flow through the servers that it is running on (á la Spark/Flink/Kafka), or does it orchestrate actions on other systems (á la Airflow/Oozie)?
    • How do you manage versioning and backup of data flows, as well as promoting them between environments?
  • One of the advertised features is tracking provenance for data flows that are managed by NiFi. How is that data collected and managed?
    • What types of reporting are available across this information?
  • What are some of the use cases or requirements that lend themselves well to being solved by NiFi?
    • When is NiFi the wrong choice?
  • What is involved in deploying and scaling a NiFi installation?
    • What are some of the system/network parameters that should be considered?
    • What are the scaling limitations?
  • What have you found to be some of the most interesting, unexpected, and/or challenging aspects of building and maintaining the NiFi project and community?
  • What do you have planned for the future of NiFi?

Contact Info

Parting Question

  • From your perspective, what is the biggest gap in the tooling or technology for data management today?

Links

The intro and outro music is from The Hug by The Freak Fandango Orchestra / CC BY-SA

The Alooma Data Pipeline With CTO Yair Weinberger - Episode 33

Summary

Building an ETL pipeline is a common need across businesses and industries. It’s easy to get one started but difficult to manage as new requirements are added and greater scalability becomes necessary. Rather than duplicating the efforts of other engineers it might be best to use a hosted service to handle the plumbing so that you can focus on the parts that actually matter for your business. In this episode CTO and co-founder of Alooma, Yair Weinberger, explains how the platform addresses the common needs of data collection, manipulation, and storage while allowing for flexible processing. He describes the motivation for starting the company, how their infrastructure is architected, and the challenges of supporting multi-tenancy and a wide variety of integrations.

Preamble

  • Hello and welcome to the Data Engineering Podcast, the show about modern data management
  • When you’re ready to build your next pipeline you’ll need somewhere to deploy it, so check out Linode. With private networking, shared block storage, node balancers, and a 40Gbit network, all controlled by a brand new API you’ve got everything you need to run a bullet-proof data platform. Go to dataengineeringpodcast.com/linode to get a $20 credit and launch a new server in under a minute.
  • For complete visibility into the health of your pipeline, including deployment tracking, and powerful alerting driven by machine-learning, DataDog has got you covered. With their monitoring, metrics, and log collection agent, including extensive integrations and distributed tracing, you’ll have everything you need to find and fix performance bottlenecks in no time. Go to dataengineeringpodcast.com/datadog today to start your free 14 day trial and get a sweet new T-Shirt.
  • Go to dataengineeringpodcast.com to subscribe to the show, sign up for the newsletter, read the show notes, and get in touch.
  • Your host is Tobias Macey and today I’m interviewing Yair Weinberger about Alooma, a company providing data pipelines as a service

Interview

  • Introduction
  • How did you get involved in the area of data management?
  • What is Alooma and what is the origin story?
  • How is the Alooma platform architected?
    • I want to go into stream VS batch here
    • What are the most challenging components to scale?
  • How do you manage the underlying infrastructure to support your SLA of 5 nines?
  • What are some of the complexities introduced by processing data from multiple customers with various compliance requirements?
    • How do you sandbox user’s processing code to avoid security exploits?
  • What are some of the potential pitfalls for automatic schema management in the target database?
  • Given the large number of integrations, how do you maintain the
    • What are some challenges when creating integrations, isn’t it simply conforming with an external API?
  • For someone getting started with Alooma what does the workflow look like?
  • What are some of the most challenging aspects of building and maintaining Alooma?
  • What are your plans for the future of Alooma?

Contact Info

Parting Question

  • From your perspective, what is the biggest gap in the tooling or technology for data management today?

Links

The intro and outro music is from The Hug by The Freak Fandango Orchestra / CC BY-SA

Brief Conversations From The Open Data Science Conference: Part 1 - Episode 30

Summary

The Open Data Science Conference brings together a variety of data professionals each year in Boston. This week’s episode consists of a pair of brief interviews conducted on-site at the conference. First up you’ll hear from Alan Anders, the CTO of Applecart about their challenges with getting Spark to scale for constructing an entity graph from multiple data sources. Next I spoke with Stepan Pushkarev, the CEO, CTO, and Co-Founder of Hydrosphere.io about the challenges of running machine learning models in production and how his team tracks key metrics and samples production data to re-train and re-deploy those models for better accuracy and more robust operation.

Preamble

  • Hello and welcome to the Data Engineering Podcast, the show about modern data management
  • When you’re ready to build your next pipeline you’ll need somewhere to deploy it, so check out Linode. With private networking, shared block storage, node balancers, and a 40Gbit network, all controlled by a brand new API you’ve got everything you need to run a bullet-proof data platform. Go to dataengineeringpodcast.com/linode to get a $20 credit and launch a new server in under a minute.
  • Go to dataengineeringpodcast.com to subscribe to the show, sign up for the newsletter, read the show notes, and get in touch.
  • Your host is Tobias Macey and this week I attended the Open Data Science Conference in Boston and recorded a few brief interviews on-site. First up you’ll hear from Alan Anders, the CTO of Applecart about their challenges with getting Spark to scale for constructing an entity graph from multiple data sources. Next I spoke with Stepan Pushkarev, the CEO, CTO, and Co-Founder of Hydrosphere.io about the challenges of running machine learning models in production and how his team tracks key metrics and samples production data to re-train and re-deploy those models for better accuracy and more robust operation.

Interview

Alan Anders from Applecart

  • What are the challenges of gathering and processing data from multiple data sources and representing them in a unified manner for merging into single entities?
  • What are the biggest technical hurdles at Applecart?

Contact Info

Parting Question

  • From your perspective, what is the biggest gap in the tooling or technology for data management today?

Links

Stepan Pushkarev from Hydrosphere.io

  • What is Hydropshere.io?
  • What metrics do you track to determine when a machine learning model is not producing an appropriate output?
  • How do you determine which data points to sample for retraining the model?
  • How does the role of a machine learning engineer differ from data engineers and data scientists?

Contact Info

Parting Question

  • From your perspective, what is the biggest gap in the tooling or technology for data management today?

Links

The intro and outro music is from The Hug by The Freak Fandango Orchestra / CC BY-SA

ThreatStack: Data Driven Cloud Security with Pete Cheslock and Patrick Cable - Episode 25

Summary

Cloud computing and ubiquitous virtualization have changed the ways that our applications are built and deployed. This new environment requires a new way of tracking and addressing the security of our systems. ThreatStack is a platform that collects all of the data that your servers generate and monitors for unexpected anomalies in behavior that would indicate a breach and notifies you in near-realtime. In this episode ThreatStack’s director of operations, Pete Cheslock, and senior infrastructure security engineer, Patrick Cable, discuss the data infrastructure that supports their platform, how they capture and process the data from client systems, and how that information can be used to keep your systems safe from attackers.

Preamble

  • Hello and welcome to the Data Engineering Podcast, the show about modern data management
  • When you’re ready to build your next pipeline you’ll need somewhere to deploy it, so check out Linode. With private networking, shared block storage, node balancers, and a 40Gbit network, all controlled by a brand new API you’ve got everything you need to run a bullet-proof data platform. Go to dataengineeringpodcast.com/linode to get a $20 credit and launch a new server in under a minute.
  • For complete visibility into the health of your pipeline, including deployment tracking, and powerful alerting driven by machine-learning, DataDog has got you covered. With their monitoring, metrics, and log collection agent, including extensive integrations and distributed tracing, you’ll have everything you need to find and fix performance bottlenecks in no time. Go to dataengineeringpodcast.com/datadog today to start your free 14 day trial and get a sweet new T-Shirt.
  • Go to dataengineeringpodcast.com to subscribe to the show, sign up for the newsletter, read the show notes, and get in touch.
  • Your host is Tobias Macey and today I’m interviewing Pete Cheslock and Pat Cable about the data infrastructure and security controls at ThreatStack

Interview

  • Introduction
  • How did you get involved in the area of data management?
  • Why don’t you start by explaining what ThreatStack does?
    • What was lacking in the existing options (services and self-hosted/open source) that ThreatStack solves for?
  • Can you describe the type(s) of data that you collect and how it is structured?
  • What is the high level data infrastructure that you use for ingesting, storing, and analyzing your customer data?
    • How do you ensure a consistent format of the information that you receive?
    • How do you ensure that the various pieces of your platform are deployed using the proper configurations and operating as intended?
    • How much configuration do you provide to the end user in terms of the captured data, such as sampling rate or additional context?
  • I understand that your original architecture used RabbitMQ as your ingest mechanism, which you then migrated to Kafka. What was your initial motivation for that change?
    • How much of a benefit has that been in terms of overall complexity and cost (both time and infrastructure)?
  • How do you ensure the security and provenance of the data that you collect as it traverses your infrastructure?
  • What are some of the most common vulnerabilities that you detect in your client’s infrastructure?
  • For someone who wants to start using ThreatStack, what does the setup process look like?
  • What have you found to be the most challenging aspects of building and managing the data processes in your environment?
  • What are some of the projects that you have planned to improve the capacity or capabilities of your infrastructure?

Contact Info

Parting Question

  • From your perspective, what is the biggest gap in the tooling or technology for data management today?

Links

The intro and outro music is from The Hug by The Freak Fandango Orchestra / CC BY-SA

Pulsar: Fast And Scalable Messaging with Rajan Dhabalia and Matteo Merli - Episode 17

Summary

One of the critical components for modern data infrastructure is a scalable and reliable messaging system. Publish-subscribe systems have been popular for many years, and recently stream oriented systems such as Kafka have been rising in prominence. This week Rajan Dhabalia and Matteo Merli discuss the work they have done on Pulsar, which supports both options, in addition to being globally scalable and fast. They explain how Pulsar is architected, how to scale it, and how it fits into your existing infrastructure.

Preamble

  • Hello and welcome to the Data Engineering Podcast, the show about modern data infrastructure
  • When you’re ready to launch your next project you’ll need somewhere to deploy it. Check out Linode at dataengineeringpodcast.com/linode and get a $20 credit to try out their fast and reliable Linux virtual servers for running your data pipelines or trying out the tools you hear about on the show.
  • Go to dataengineeringpodcast.com to subscribe to the show, sign up for the newsletter, read the show notes, and get in touch.
  • You can help support the show by checking out the Patreon page which is linked from the site.
  • To help other people find the show you can leave a review on iTunes, or Google Play Music, and tell your friends and co-workers
  • A few announcements:
    • There is still time to register for the O’Reilly Strata Conference in San Jose, CA March 5th-8th. Use the link dataengineeringpodcast.com/strata-san-jose to register and save 20%
    • The O’Reilly AI Conference is also coming up. Happening April 29th to the 30th in New York it will give you a solid understanding of the latest breakthroughs and best practices in AI for business. Go to dataengineeringpodcast.com/aicon-new-york to register and save 20%
    • If you work with data or want to learn more about how the projects you have heard about on the show get used in the real world then join me at the Open Data Science Conference in Boston from May 1st through the 4th. It has become one of the largest events for data scientists, data engineers, and data driven businesses to get together and learn how to be more effective. To save 60% off your tickets go to dataengineeringpodcast.com/odsc-east-2018 and register.
  • Your host is Tobias Macey and today I’m interviewing Rajan Dhabalia and Matteo Merli about Pulsar, a distributed open source pub-sub messaging system

Interview

  • Introduction
  • How did you get involved in the area of data management?
  • Can you start by explaining what Pulsar is and what the original inspiration for the project was?
  • What have been some of the most challenging aspects of building and promoting Pulsar?
  • For someone who wants to run Pulsar, what are the infrastructure and network requirements that they should be considering and what is involved in deploying the various components?
  • What are the scaling factors for Pulsar and what aspects of deployment and administration should users pay special attention to?
  • What projects or services do you consider to be competitors to Pulsar and what makes it stand out in comparison?
  • The documentation mentions that there is an API layer that provides drop-in compatibility with Kafka. Does that extend to also supporting some of the plugins that have developed on top of Kafka?
  • One of the popular aspects of Kafka is the persistence of the message log, so I’m curious how Pulsar manages long-term storage and reprocessing of messages that have already been acknowledged?
  • When is Pulsar the wrong tool to use?
  • What are some of the improvements or new features that you have planned for the future of Pulsar?

Contact Info

Parting Question

  • From your perspective, what is the biggest gap in the tooling or technology for data management today?

Links

The intro and outro music is from The Hug by The Freak Fandango Orchestra / CC BY-SA

Buzzfeed Data Infrastructure with Walter Menendez - Episode 7

Summary

Buzzfeed needs to be able to understand how its users are interacting with the myriad articles, videos, etc. that they are posting. This lets them produce new content that will continue to be well-received. To surface the insights that they need to grow their business they need a robust data infrastructure to reliably capture all of those interactions. Walter Menendez is a data engineer on their infrastructure team and in this episode he describes how they manage data ingestion from a wide array of sources and create an interface for their data scientists to produce valuable conclusions.

Preamble

  • Hello and welcome to the Data Engineering Podcast, the show about modern data management
  • When you’re ready to launch your next project you’ll need somewhere to deploy it. Check out Linode at dataengineeringpodcast.com/linode and get a $20 credit to try out their fast and reliable Linux virtual servers for running your data pipelines or trying out the tools you hear about on the show.
  • Continuous delivery lets you get new features in front of your users as fast as possible without introducing bugs or breaking production and GoCD is the open source platform made by the people at Thoughtworks who wrote the book about it. Go to dataengineeringpodcast.com/gocd to download and launch it today. Enterprise add-ons and professional support are available for added peace of mind.
  • Go to dataengineeringpodcast.com to subscribe to the show, sign up for the newsletter, read the show notes, and get in touch.
  • You can help support the show by checking out the Patreon page which is linked from the site.
  • To help other people find the show you can leave a review on iTunes, or Google Play Music, and tell your friends and co-workers
  • Your host is Tobias Macey and today I’m interviewing Walter Menendez about the data engineering platform at Buzzfeed

Interview

  • Introduction
  • How did you get involved in the area of data management?
  • How is the data engineering team at Buzzfeed structured and what kinds of projects are you responsible for?
  • What are some of the types of data inputs and outputs that you work with at Buzzfeed?
  • Is the core of your system using a real-time streaming approach or is it primarily batch-oriented and what are the business needs that drive that decision?
  • What does the architecture of your data platform look like and what are some of the most significant areas of technical debt?
  • Which platforms and languages are most widely leveraged in your team and what are some of the outliers?
  • What are some of the most significant challenges that you face, both technically and organizationally?
  • What are some of the dead ends that you have run into or failed projects that you have tried?
  • What has been the most successful project that you have completed and how do you measure that success?

Contact Info

Links

The intro and outro music is from The Hug by The Freak Fandango Orchestra / CC BY-SA