Open Source

Data Quality Management For The Whole Team With Soda Data - Episode 178

Data quality is on the top of everyone’s mind recently, but getting it right is as challenging as ever. One of the contributing factors is the number of people who are involved in the process and the potential impact on the business if something goes wrong. In this episode Maarten Masschelein and Tom Baeyens share the work they are doing at Soda to bring everyone on board to make your data clean and reliable. They explain how they started down the path of building a solution for managing data quality, their philosophy of how to empower data engineers with well engineered open source tools that integrate with the rest of the platform, and how to bring all of the stakeholders onto the same page to make your data great. There are many aspects of data quality management and it’s always a treat to learn from people who are dedicating their time and energy to solving it for everyone.

Read More

Self Service Open Source Data Integration With AirByte - Episode 173

Data integration is a critical piece of every data pipeline, yet it is still far from being a solved problem. There are a number of managed platforms available, but the list of options for an open source system that supports a large variety of sources and destinations is still embarrasingly short. The team at Airbyte is adding a new entry to that list with the goal of making robust and easy to use data integration more accessible to teams who want or need to maintain full control of their data. In this episode co-founders John Lafleur and Michel Tricot share the story of how and why they created Airbyte, discuss the project’s design and architecture, and explain their vision of what an open soure data integration platform should offer. If you are struggling to maintain your extract and load pipelines or spending time on integrating with a new system when you would prefer to be working on other projects then this is definitely a conversation worth listening to.

Read More

System Observability For The Cloud Native Era With Chronosphere - Episode 170

Collecting and processing metrics for monitoring use cases is an interesting data problem. It is eminently possible to generate millions or billions of data points per second, the information needs to be propagated to a central location, processed, and analyzed in timeframes on the order of milliseconds or single-digit seconds, and the consumers of the data need to be able to query the information quickly and flexibly. As the systems that we build continue to grow in scale and complexity the need for reliable and manageable monitoring platforms increases proportionately. In this episode Rob Skillington, CTO of Chronosphere, shares his experiences building metrics systems that provide observability to companies that are operating at extreme scale. He describes how the M3DB storage engine is designed to manage the pressures of a critical system component, the inherent complexities of working with telemetry data, and the motivating factors that are contributing to the growing need for flexibility in querying the collected metrics. This is a fascinating conversation about an area of data management that is often taken for granted.

Read More

Enabling Version Controlled Data Collaboration With TerminusDB - Episode 167

As data professionals we have a number of tools available for storing, processing, and analyzing data. We also have tools for collaborating on software and analysis, but collaborating on data is still an underserved capability. Gavin Mendel-Gleason encountered this problem first hand while working on the Sesshat databank, leading him to create TerminusDB and TerminusHub. In this episode he explains how the TerminusDB system is architected to provide a versioned graph storage engine that allows for branching and merging of data sets, how that opens up new possibilities for individuals and teams to work together on building new data repositories. This is a fascinating conversation on the technical challenges involved, the opportunities that such as system provides, and the complexities inherent to building a successful business on open source.

Read More

Distributed In Memory Processing And Streaming With Hazelcast - Episode 150

In memory computing provides significant performance benefits, but brings along challenges for managing failures and scaling up. Hazelcast is a platform for managing stateful in-memory storage and computation across a distributed cluster of commodity hardware. On top of this foundation, the Hazelcast team has also built a streaming platform for reliable high throughput data transmission. In this episode Dale Kim shares how Hazelcast is implemented, the use cases that it enables, and how it complements on-disk data management systems.

Read More

Simplify Your Data Architecture With The Presto Distributed SQL Engine - Episode 149

Databases are limited in scope to the information that they directly contain. For analytical use cases you often want to combine data across multiple sources and storage locations. This frequently requires cumbersome and time-consuming data integration. To address this problem Martin Traverso and his colleagues at Facebook built the Presto distributed query engine. In this episode he explains how it is designed to allow for querying and combining data where it resides, the use cases that such an architecture unlocks, and the innovative ways that it is being employed at companies across the world. If you need to work with data in your cloud data lake, your on-premise database, or a collection of flat files, then give this episode a listen and then try out Presto today.

Read More

Exploring The TileDB Universal Data Engine - Episode 146

Most databases are designed to work with textual data, with some special purpose engines that support domain specific formats. TileDB is a data engine that was built to support every type of data by using multi-dimensional arrays as the foundational primitive. In this episode the creator and founder of TileDB shares how he first started working on the underlying technology and the benefits of using a single engine for efficiently storing and querying any form of data. He also discusses the shifts in database architectures from vertically integrated monoliths to separately deployed layers, and the approach he is taking with TileDB cloud to embed the authorization into the storage engine, while providing a flexible interface for compute. This was a great conversation about a different approach to database architecture and how that enables a more flexible way to store and interact with data to power better data sharing and new opportunities for blending specialized domains.

Read More

Build More Reliable Distributed Systems By Breaking Them With Jepsen - Episode 143

A majority of the scalable data processing platforms that we rely on are built as distributed systems. This brings with it a vast number of subtle ways that errors can creep in. Kyle Kingsbury created the Jepsen framework for testing the guarantees of distributed data processing systems and identifying when and why they break. In this episode he shares his approach to testing complex systems, the common challenges that are faced by engineers who build them, and why it is important to understand their limitations. This was a great look at some of the underlying principles that power your mission critical workloads.

Read More

Open Source Production Grade Data Integration With Meltano - Episode 141

The first stage of every data pipeline is extracting the information from source systems. There are a number of platforms for managing data integration, but there is a notable lack of a robust and easy to use open source option. The Meltano project is aiming to provide a solution to that situation. In this episode, project lead Douwe Maan shares the history of how Meltano got started, the motivation for the recent shift in focus, and how it is implemented. The Singer ecosystem has laid the groundwork for a great option to empower teams of all sizes to unlock the value of their Data and Meltano is building the reamining structure to make it a fully featured contender for proprietary systems.

Read More