Linode

Designing And Deploying IoT Analytics For Industrial Applications At Vopak - Episode 290

Industrial applications are one of the primary adopters of Internet of Things (IoT) technologies, with business critical operations being informed by data collected across a fleet of sensors. Vopak is a business that manages storage and distribution of a variety of liquids that are critical to the modern world, and they have recently launched a new platform to gain more utility from their industrial sensors. In this episode Mário Pereira shares the system design that he and his team have developed for collecting and managing the collection and analysis of sensor data, and how they have split the data processing and business logic responsibilities between physical terminals and edge locations, and centralized storage and compute.

Read More

Insights And Advice On Building A Data Lake Platform From Someone Who Learned The Hard Way - Episode 289

Designing a data platform is a complex and iterative undertaking which requires accounting for many conflicting needs. Designing a platform that relies on a data lake as its central architectural tenet adds additional layers of difficulty. Srivatsan Sridharan has had the opportunity to design, build, and run data lake platforms for both Yelp and Robinhood, with many valuable lessons learned from each experience. In this episode he shares his insights and advice on how to approach such an undertaking in your own organization.

Read More

Exploring The Insights And Impact Of Dan Delorey's Distinguished Career In Data - Episode 288

Dan Delorey helped to build the core technologies of Google’s cloud data services for many years before embarking on his latest adventure as the VP of Data at SoFi. From being an early engineer on the Dremel project, to helping launch and manage BigQuery, on to helping enterprises adopt Google’s data products he learned all of the critical details of how to run services used by data platform teams. Now he is the consumer of many of the tools that his work inspired. In this episode he takes a trip down memory lane to weave an interesting and informative narrative about the broader themes throughout his work and their echoes in the modern data ecosystem.

Read More

Scaling Analysis of Connected Data And Modeling Complex Relationships With The TigerGraph Graph Database - Episode 287

Many of the events, ideas, and objects that we try to represent through data have a high degree of connectivity in the real world. These connections are best represented and analyzed as graphs to provide efficient and accurate analysis of their relationships. TigerGraph is a leading database that offers a highly scalable and performant native graph engine for powering graph analytics and machine learning. In this episode Jon Herke shares how TigerGraph customers are taking advantage of those capabilities to achieve meaningful discoveries in their fields, the utilities that it provides for modeling and managing your connected data, and some of his own experiences working with the platform before joining the company.

Read More

Leading The Charge For The ELT Data Integration Pattern For Cloud Data Warehouses At Matillion - Episode 286

The predominant pattern for data integration in the cloud has become extract, load, and then transform or ELT. Matillion was an early innovator of that approach and in this episode CTO Ed Thompson explains how they have evolved the platform to keep pace with the rapidly changing ecosystem. He describes how the platform is architected, the challenges related to selling cloud technologies into enterprise organizations, and how you can adopt Matillion for your own workflows to reduce the maintenance burden of data integration workflows.

Read More

Evolving And Scaling The Data Platform at Yotpo - Episode 285

Building a data platform is an iterative and evolutionary process that requires collaboration with internal stakeholders to ensure that their needs are being met. Yotpo has been on a journey to evolve and scale their data platform to continue serving the needs of their organization as it increases the scale and sophistication of data usage. In this episode Doron Porat and Liran Yogev explain how they arrived at their current architecture, the capabilities that they are optimizing for, and the complex process of identifying and evaluating new components to integrate into their systems. This is an excellent exploration of the decisions and tradeoffs that need to be made while building such a complex system.

Read More

Operational Analytics At Speed With Minimal Busy Work Using Incorta - Episode 284

A huge amount of effort goes into modeling and shaping data to make it available for analytical purposes. This is often due to the need to simplify the final queries so that they are performant for visualization or limited exploration. In order to cut down the level of effort involved in making data usable, Matthew Halliday and his co-founders created Incorta as an end-to-end, in-memory analytical engine that removes barriers to insights on your data. In this episode he explains how the system works, the use cases that it empowers, and how you can start using it for your own analytics today.

Read More

Gain Visibility Into Your Entire Machine Learning System Using Data Logging With WhyLogs - Episode 283

There are very few tools which are equally useful for data engineers, data scientists, and machine learning engineers. WhyLogs is a powerful library for flexibly instrumenting all of your data systems to understand the entire lifecycle of your data from source to productionized model. In this episode Andy Dang explains why the project was created, how you can apply it to your existing data systems, and how it functions to provide detailed context for being able to gain insight into all of your data processes.

Read More

Connecting To The Next Frontier Of Computing With Quantum Networks - Episode 282

The next paradigm shift in computing is coming in the form of quantum technologies. Quantum procesors have gained significant attention for their speed and computational power. The next frontier is in quantum networking for highly secure communications and the ability to distribute across quantum processing units without costly translation between quantum and classical systems. In this episode Prineha Narang, co-founder and CTO of Aliro, explains how these systems work, the capabilities that they can offer, and how you can start preparing for a post-quantum future for your data systems.

Read More

What Does It Really Mean To Do MLOps And What Is The Data Engineer's Role? - Episode 281

Putting machine learning models into production and keeping them there requires investing in well-managed systems to manage the full lifecycle of data cleaning, training, deployment and monitoring. This requires a repeatable and evolvable set of processes to keep it functional. The term MLOps has been coined to encapsulate all of these principles and the broader data community is working to establish a set of best practices and useful guidelines for streamlining adoption. In this episode Demetrios Brinkmann and David Aponte share their perspectives on this rapidly changing space and what they have learned from their work building the MLOps community through blog posts, podcasts, and discussion forums.

Read More