ETL

Automating Your Production Dataflows On Spark - Episode 105

As data engineers the health of our pipelines is our highest priority. Unfortunately, there are countless ways that our dataflows can break or degrade that have nothing to do with the business logic or data transformations that we write and maintain. Sean Knapp founded Ascend to address the operational challenges of running a production grade and scalable Spark infrastructure, allowing data engineers to focus on the problems that power their business. In this episode he explains the technical implementation of the Ascend platform, the challenges that he has faced in the process, and how you can use it to simplify your dataflow automation. This is a great conversation to get an understanding of all of the incidental engineering that is necessary to make your data reliable.

Read More

Build Maintainable And Testable Data Applications With Dagster - Episode 104

Despite the fact that businesses have relied on useful and accurate data to succeed for decades now, the state of the art for obtaining and maintaining that information still leaves much to be desired. In an effort to create a better abstraction for building data applications Nick Schrock created Dagster. In this episode he explains his motivation for creating a product for data management, how the programming model simplifies the work of building testable and maintainable pipelines, and his vision for the future of data programming. If you are building dataflows then Dagster is definitely worth exploring.

Read More

Digging Into Data Replication At Fivetran - Episode 93

The extract and load pattern of data replication is the most commonly needed process in data engineering workflows. Because of the myriad sources and destinations that are available, it is also among the most difficult tasks that we encounter. Fivetran is a platform that does the hard work for you and replicates information from your source systems into whichever data warehouse you use. In this episode CEO and co-founder George Fraser explains how it is built, how it got started, and the challenges that creep in at the edges when dealing with so many disparate systems that need to be made to work together. This is a great conversation to listen to for a better understanding of the challenges inherent in synchronizing your data.

Read More

Simplifying Data Integration Through Eventual Connectivity - Episode 91

The ETL pattern that has become commonplace for integrating data from multiple sources has proven useful, but complex to maintain. For a small number of sources it is a tractable problem, but as the overall complexity of the data ecosystem continues to expand it may be time to identify new ways to tame the deluge of information. In this episode Tim Ward, CEO of CluedIn, explains the idea of eventual connectivity as a new paradigm for data integration. Rather than manually defining all of the mappings ahead of time, we can rely on the power of graph databases and some strategic metadata to allow connections to occur as the data becomes available. If you are struggling to maintain a tangle of data pipelines then you might find some new ideas for reducing your workload.

Read More

The Workflow Engine For Data Engineers And Data Scientists - Episode 86

Building a data platform that works equally well for data engineering and data science is a task that requires familiarity with the needs of both roles. Data engineering platforms have a strong focus on stateful execution and tasks that are strictly ordered based on dependency graphs. Data science platforms provide an environment that is conducive to rapid experimentation and iteration, with data flowing directly between stages. Jeremiah Lowin has gained experience in both styles of working, leading him to be frustrated with all of the available tools. In this episode he explains his motivation for creating a new workflow engine that marries the needs of data engineers and data scientists, how it helps to smooth the handoffs between teams working on data projects, and how the design lets you focus on what you care about while it handles the failure cases for you. It is exciting to see a new generation of workflow engine that is learning from the benefits and failures of previous tools for processing your data pipelines.

Read More

Evolving An ETL Pipeline For Better Productivity - Episode 83

Building an ETL pipeline can be a significant undertaking, and sometimes it needs to be rebuilt when a better option becomes available. In this episode Aaron Gibralter, director of engineering at Greenhouse, joins Raghu Murthy, founder and CEO of DataCoral, to discuss the journey that he and his team took from an in-house ETL pipeline built out of open source components onto a paid service. He explains how their original implementation was built, why they decided to migrate to a paid service, and how they made that transition. He also discusses how the abstractions provided by DataCoral allows his data scientists to remain productive without requiring dedicated data engineers. If you are either considering how to build a data pipeline or debating whether to migrate your existing ETL to a service this is definitely worth listening to for some perspective.

Read More

Build Your Data Analytics Like An Engineer - Episode 81

In recent years the traditional approach to building data warehouses has shifted from transforming records before loading, to transforming them afterwards. As a result, the tooling for those transformations needs to be reimagined. The data build tool (dbt) is designed to bring battle tested engineering practices to your analytics pipelines. By providing an opinionated set of best practices it simplifies collaboration and boosts confidence in your data teams. In this episode Drew Banin, creator of dbt, explains how it got started, how it is designed, and how you can start using it today to create reliable and well-tested reports in your favorite data warehouse.

Read More

Serverless Data Pipelines On DataCoral - Episode 76

How much time do you spend maintaining your data pipeline? How much end user value does that provide? Raghu Murthy founded DataCoral as a way to abstract the low level details of ETL so that you can focus on the actual problem that you are trying to solve. In this episode he explains his motivation for building the DataCoral platform, how it is leveraging serverless computing, the challenges of delivering software as a service to customer environments, and the architecture that he has designed to make batch data management easier to work with. This was a fascinating conversation with someone who has spent his entire career working on simplifying complex data problems.

Read More

Cleaning And Curating Open Data For Archaeology - Episode 68

Archaeologists collect and create a variety of data as part of their research and exploration. Open Context is a platform for cleaning, curating, and sharing this data. In this episode Eric Kansa describes how they process, clean, and normalize the data that they host, the challenges that they face with scaling ETL processes which require domain specific knowledge, and how the information contained in connections that they expose is being used for interesting projects.

Read More

Advice On Scaling Your Data Pipeline Alongside Your Business with Christian Heinzmann - Episode 61

Every business needs a pipeline for their critical data, even if it is just pasting into a spreadsheet. As the organization grows and gains more customers, the requirements for that pipeline will change. In this episode Christian Heinzmann, Head of Data Warehousing at Grubhub, discusses the various requirements for data pipelines and how the overall system architecture evolves as more data is being processed. He also covers the changes in how the output of the pipelines are used, how that impacts the expectations for accuracy and availability, and some useful advice on build vs. buy for the components of a data platform.

Read More