How Upsolver Is Building A Data Lake Platform In The Cloud with Yoni Iny - Episode 56

A data lake can be a highly valuable resource, as long as it is well built and well managed. Unfortunately, that can be a complex and time-consuming effort, requiring specialized knowledge and diverting resources from your primary business. In this episode Yoni Iny, CTO of Upsolver, discusses the various components that are necessary for a successful data lake project, how the Upsolver platform is architected, and how modern data lakes can benefit your organization.

Improving The Performance Of Cloud-Native Big Data At Netflix Using The Iceberg Table Format with Ryan Blue - Episode 52

With the growth of the Hadoop ecosystem came a proliferation of implementations for the Hive table format. Unfortunately, with no formal specification, each project works slightly different which increases the difficulty of integration across systems. The Hive format is also built with the assumptions of a local filesystem which results in painful edge cases when leveraging cloud object storage for a data lake. In this episode Ryan Blue explains how his work on the Iceberg table format specification and reference implementation has allowed Netflix to improve the performance and simplify operations for their S3 data lake. This is a highly detailed and technical exploration of how a well-engineered metadata layer can improve the speed, accuracy, and utility of large scale, multi-tenant, cloud-native data platforms.

Combining Transactional And Analytical Workloads On MemSQL with Nikita Shamgunov - Episode 51

One of the most complex aspects of managing data for analytical workloads is moving it from a transactional database into the data warehouse. What if you didn’t have to do that at all? MemSQL is a distributed database built to support concurrent use by transactional, application oriented, and analytical, high volume, workloads on the same hardware. In this episode the CEO of MemSQL describes how the company and database got started, how it is architected for scale and speed, and how it is being used in production. This was a deep dive on how to build a successful company around a powerful platform, and how that platform simplifies operations for enterprise grade data management.

Keep Your Data And Query It Too Using Chaos Search with Thomas Hazel and Pete Cheslock - Episode 47

Elasticsearch is a powerful tool for storing and analyzing data, but when using it for logs and other time oriented information it can become problematic to keep all of your history. Chaos Search was started to make it easy for you to keep all of your data and make it usable in S3, so that you can have the best of both worlds. In this episode the CTO, Thomas Hazel, and VP of Product, Pete Cheslock, describe how they have built a platform to let you keep all of your history, save money, and reduce your operational overhead. They also explain some of the types of data that you can use with Chaos Search, how to load it into S3, and when you might want to choose it over Amazon Athena for our serverless data analysis.

Graph Databases In Production At Scale Using DGraph with Manish Jain - Episode 44

The way that you store your data can have a huge impact on the ways that it can be practically used. For a substantial number of use cases, the optimal format for storing and querying that information is as a graph, however databases architected around that use case have historically been difficult to use at scale or for serving fast, distributed queries. In this episode Manish Jain explains how DGraph is overcoming those limitations, how the project got started, and how you can start using it today. He also discusses the various cases where a graph storage layer is beneficial, and when you would be better off using something else. In addition he talks about the challenges of building a distributed, consistent database and the tradeoffs that were made to make DGraph a reality.

Taking A Tour Of PostgreSQL with Jonathan Katz - Episode 42

One of the longest running and most popular open source database projects is PostgreSQL. Because of its extensibility and a community focus on stability it has stayed relevant as the ecosystem of development environments and data requirements have changed and evolved over its lifetime. It is difficult to capture any single facet of this database in a single conversation, let alone the entire surface area, but in this episode Jonathan Katz does an admirable job of it. He explains how Postgres started and how it has grown over the years, highlights the fundamental features that make it such a popular choice for application developers, and the ongoing efforts to add the complex features needed by the demanding workloads of today’s data layer. To cap it off he reviews some of the exciting features that the community is working on building into future releases.

Ceph: A Reliable And Scalable Distributed Filesystem with Sage Weil - Episode 40

When working with large volumes of data that you need to access in parallel across multiple instances you need a distributed filesystem that will scale with your workload. Even better is when that same system provides multiple paradigms for interacting with the underlying storage. Ceph is a highly available, highly scalable, and performant system that has support for object storage, block storage, and native filesystem access. In this episode Sage Weil, the creator and lead maintainer of the project, discusses how it got started, how it works, and how you can start using it on your infrastructure today. He also explains where it fits in the current landscape of distributed storage and the plans for future improvements.

Package Management And Distribution For Your Data Using Quilt with Kevin Moore - Episode 37

Collaboration, distribution, and installation of software projects is largely a solved problem, but the same cannot be said of data. Every data team has a bespoke means of sharing data sets, versioning them, tracking related metadata and changes, and publishing them for use in the software systems that rely on them. The CEO and founder of Quilt Data, Kevin Moore, was sufficiently frustrated by this problem to create a platform that attempts to be the means by which data can be as collaborative and easy to work with as GitHub and your favorite programming language. In this episode he explains how the project came to be, how it works, and the many ways that you can start using it today.

CockroachDB In Depth with Peter Mattis - Episode 35

With the increased ease of gaining access to servers in data centers across the world has come the need for supporting globally distributed data storage. With the first wave of cloud era databases the ability to replicate information geographically came at the expense of transactions and familiar query languages. To address these shortcomings the engineers at Cockroach Labs have built a globally distributed SQL database with full ACID semantics in Cockroach DB. In this episode Peter Mattis, the co-founder and VP of Engineering at Cockroach Labs, describes the architecture that underlies the database, the challenges they have faced along the way, and the ways that you can use it in your own environments today.