Performing Fast Data Analytics Using Apache Kudu - Episode 64

The Hadoop platform is purpose built for processing large, slow moving data in long-running batch jobs. As the ecosystem around it has grown, so has the need for fast data analytics on fast moving data. To fill this need the Kudu project was created with a column oriented table format that was tuned for high volumes of writes and rapid query execution across those tables. For a perfect pairing, they made it easy to connect to the Impala SQL engine. In this episode Brock Noland and Jordan Birdsell from PhData explain how Kudu is architected, how it compares to other storage systems in the Hadoop orbit, and how to start integrating it into you analytics pipeline.

Simplifying Continuous Data Processing Using Stream Native Storage In Pravega with Tom Kaitchuck - Episode 63

As more companies and organizations are working to gain a real-time view of their business, they are increasingly turning to stream processing technologies to fullfill that need. However, the storage requirements for continuous, unbounded streams of data are markedly different than that of batch oriented workloads. To address this shortcoming the team at Dell EMC has created the open source Pravega project. In this episode Tom Kaitchuk explains how Pravega simplifies storage and processing of data streams, how it integrates with processing engines such as Flink, and the unique capabilities that it provides in the area of exactly once processing and transactions. And if you listen at approximately the half-way mark, you can hear as the hosts mind is blown by the possibilities of treating everything, including schema information, as a stream.

How Upsolver Is Building A Data Lake Platform In The Cloud with Yoni Iny - Episode 56

A data lake can be a highly valuable resource, as long as it is well built and well managed. Unfortunately, that can be a complex and time-consuming effort, requiring specialized knowledge and diverting resources from your primary business. In this episode Yoni Iny, CTO of Upsolver, discusses the various components that are necessary for a successful data lake project, how the Upsolver platform is architected, and how modern data lakes can benefit your organization.

Improving The Performance Of Cloud-Native Big Data At Netflix Using The Iceberg Table Format with Ryan Blue - Episode 52

With the growth of the Hadoop ecosystem came a proliferation of implementations for the Hive table format. Unfortunately, with no formal specification, each project works slightly different which increases the difficulty of integration across systems. The Hive format is also built with the assumptions of a local filesystem which results in painful edge cases when leveraging cloud object storage for a data lake. In this episode Ryan Blue explains how his work on the Iceberg table format specification and reference implementation has allowed Netflix to improve the performance and simplify operations for their S3 data lake. This is a highly detailed and technical exploration of how a well-engineered metadata layer can improve the speed, accuracy, and utility of large scale, multi-tenant, cloud-native data platforms.

Combining Transactional And Analytical Workloads On MemSQL with Nikita Shamgunov - Episode 51

One of the most complex aspects of managing data for analytical workloads is moving it from a transactional database into the data warehouse. What if you didn’t have to do that at all? MemSQL is a distributed database built to support concurrent use by transactional, application oriented, and analytical, high volume, workloads on the same hardware. In this episode the CEO of MemSQL describes how the company and database got started, how it is architected for scale and speed, and how it is being used in production. This was a deep dive on how to build a successful company around a powerful platform, and how that platform simplifies operations for enterprise grade data management.

Keep Your Data And Query It Too Using Chaos Search with Thomas Hazel and Pete Cheslock - Episode 47

Elasticsearch is a powerful tool for storing and analyzing data, but when using it for logs and other time oriented information it can become problematic to keep all of your history. Chaos Search was started to make it easy for you to keep all of your data and make it usable in S3, so that you can have the best of both worlds. In this episode the CTO, Thomas Hazel, and VP of Product, Pete Cheslock, describe how they have built a platform to let you keep all of your history, save money, and reduce your operational overhead. They also explain some of the types of data that you can use with Chaos Search, how to load it into S3, and when you might want to choose it over Amazon Athena for our serverless data analysis.

Graph Databases In Production At Scale Using DGraph with Manish Jain - Episode 44

The way that you store your data can have a huge impact on the ways that it can be practically used. For a substantial number of use cases, the optimal format for storing and querying that information is as a graph, however databases architected around that use case have historically been difficult to use at scale or for serving fast, distributed queries. In this episode Manish Jain explains how DGraph is overcoming those limitations, how the project got started, and how you can start using it today. He also discusses the various cases where a graph storage layer is beneficial, and when you would be better off using something else. In addition he talks about the challenges of building a distributed, consistent database and the tradeoffs that were made to make DGraph a reality.

Taking A Tour Of PostgreSQL with Jonathan Katz - Episode 42

One of the longest running and most popular open source database projects is PostgreSQL. Because of its extensibility and a community focus on stability it has stayed relevant as the ecosystem of development environments and data requirements have changed and evolved over its lifetime. It is difficult to capture any single facet of this database in a single conversation, let alone the entire surface area, but in this episode Jonathan Katz does an admirable job of it. He explains how Postgres started and how it has grown over the years, highlights the fundamental features that make it such a popular choice for application developers, and the ongoing efforts to add the complex features needed by the demanding workloads of today’s data layer. To cap it off he reviews some of the exciting features that the community is working on building into future releases.

Ceph: A Reliable And Scalable Distributed Filesystem with Sage Weil - Episode 40

When working with large volumes of data that you need to access in parallel across multiple instances you need a distributed filesystem that will scale with your workload. Even better is when that same system provides multiple paradigms for interacting with the underlying storage. Ceph is a highly available, highly scalable, and performant system that has support for object storage, block storage, and native filesystem access. In this episode Sage Weil, the creator and lead maintainer of the project, discusses how it got started, how it works, and how you can start using it on your infrastructure today. He also explains where it fits in the current landscape of distributed storage and the plans for future improvements.