Data Platforms

Building Real-Time Data Platforms For Large Volumes Of Information With Aerospike - Episode 226

Aerospike is a database engine that is designed to provide millisecond response times for queries across terabytes or petabytes. In this episode Chief Strategy Officer, Lenley Hensarling, explains how the ability to process these large volumes of information in real-time allows businesses to unlock entirely new capabilities. He also discusses the technical implementation that allows for such extreme performance and how the data model contributes to the scalability of the system. If you need to deal with massive data, at high velocities, in milliseconds, then Aerospike is definitely worth learning about.

Read More

Delivering Your Personal Data Cloud With Prifina - Episode 225

The promise of online services is that they will make your life easier in exchange for collecting data about you. The reality is that they use more information than you realize for purposes that are not what you intended. There have been many attempts to harness all of the data that you generate for gaining useful insights about yourself, but they are generally difficult to set up and manage or require software development experience. The team at Prifina have built a platform that allows users to create their own personal data cloud and install applications built by developers that power useful experiences while keeping you in full control. In this episode Markus Lampinen shares the goals and vision of the company, the technical aspects of making it a reality, and the future vision for how services can be designed to respect user’s privacy while still providing compelling experiences.

Read More

Designing And Building Data Platforms As A Product - Episode 218

The term “data platform” gets thrown around a lot, but have you stopped to think about what it actually means for you and your organization? In this episode Lior Gavish, Lior Solomon, and Atul Gupte share their view of what it means to have a data platform, discuss their experiences building them at various companies, and provide advice on how to treat them like a software product. This is a valuable conversation about how to approach the work of selecting the tools that you use to power your data systems and considerations for how they can be woven together for a unified experience across your various stakeholders.

Read More

Managing The DoorDash Data Platform - Episode 176

The team at DoorDash has a complex set of optimization challenges to deal with using data that they collect from a multi-sided marketplace. In order to handle the volume and variety of information that they use to run and improve the business the data team has to build a platform that analysts and data scientists can use in a self-service manner. In this episode the head of data platform for DoorDash, Sudhir Tonse, discusses the technologies that they are using, the approach that they take to adding new systems, and how they think about priorities for what to support for the whole company vs what to leave as a specialized concern for a single team. This is a valuable look at how to manage a large and growing data platform with that supports a variety of teams with varied and evolving needs.

Read More

Building A Self Service Data Platform For Alternative Data Analytics At YipitData - Episode 163

As a data engineer you’re familiar with the process of collecting data from databases, customer data platforms, APIs, etc. At YipitData they rely on a variety of alternative data sources to inform investment decisions by hedge funds and businesses. In this episode Andrew Gross, Bobby Muldoon, and Anup Segu describe the self service data platform that they have built to allow data analysts to own the end-to-end delivery of data projects and how that has allowed them to scale their output. They share the journey that they went through to build a scalable and maintainable system for web scraping, how to make it reliable and resilient to errors, and the lessons that they learned in the process. This was a great conversation about real world experiences in building a successful data-oriented business.

Read More

Self Service Data Management From Ingest To Insights With Isima - Episode 159

The core mission of data engineers is to provide the business with a way to ask and answer questions of their data. This often takes the form of business intelligence dashboards, machine learning models, or APIs on top of a cleaned and curated data set. Despite the rapid progression of impressive tools and products built to fulfill this mission, it is still an uphill battle to tie everything together into a cohesive and reliable platform. At Isima they decided to reimagine the entire ecosystem from the ground up and built a single unified platform to allow end-to-end self service workflows from data ingestion through to analysis. In this episode CEO and co-founder of Isima Darshan Rawal explains how the biOS platform is architected to enable ease of use, the challenges that were involved in building an entirely new system from scratch, and how it can integrate with the rest of your data platform to allow for incremental adoption. This was an interesting and contrarian take on the current state of the data management industry and is worth a listen to gain some additional perspective.

Read More

Better Data Quality Through Observability With Monte Carlo - Episode 155

In order for analytics and machine learning projects to be useful, they require a high degree of data quality. To ensure that your pipelines are healthy you need a way to make them observable. In this episode Barr Moses and Lior Gavish, co-founders of Monte Carlo, share the leading causes of what they refer to as data downtime and how it manifests. They also discuss methods for gaining visibility into the flow of data through your infrastructure, how to diagnose and prevent potential problems, and what they are building at Monte Carlo to help you maintain your data’s uptime.

Read More

Enterprise Data Operations And Orchestration At Infoworks - Episode 131

Data management is hard at any scale, but working in the context of an enterprise organization adds even greater complexity. Infoworks is a platform built to provide a unified set of tooling for managing the full lifecycle of data in large businesses. By reducing the barrier to entry with a graphical interface for defining data transformations and analysis, it makes it easier to bring the domain experts into the process. In this interview co-founder and CTO of Infoworks Amar Arikere explains the unique challenges faced by enterprise organizations, how the platform is architected to provide the needed flexibility and scale, and how a unified platform for data improves the outcomes of the organizations using it.

Read More