Data Integration

Streaming Data Integration Without The Code at Equalum - Episode 161

The first stage of every good pipeline is to perform data integration. With the increasing pace of change and the need for up to date analytics the need to integrate that data in near real time is growing. With the improvements and increased variety of options for streaming data engines and improved tools for change data capture it is possible for data teams to make that goal a reality. However, despite all of the tools and managed distributions of those streaming engines it is still a challenge to build a robust and reliable pipeline for streaming data integration, especially if you need to expose those capabilities to non-engineers. In this episode Ido Friedman, CTO of Equalum, explains how they have built a no-code platform to make integration of streaming data and change data capture feeds easier to manage. He discusses the challenges that are inherent in the current state of CDC technologies, how they have architected their system to integrate well with existing data platforms, and how to build an appropriate level of abstraction for such a complex problem domain. If you are struggling with streaming data integration and change data capture then this interview is definitely worth a listen.

Read More

Self Service Data Management From Ingest To Insights With Isima - Episode 159

The core mission of data engineers is to provide the business with a way to ask and answer questions of their data. This often takes the form of business intelligence dashboards, machine learning models, or APIs on top of a cleaned and curated data set. Despite the rapid progression of impressive tools and products built to fulfill this mission, it is still an uphill battle to tie everything together into a cohesive and reliable platform. At Isima they decided to reimagine the entire ecosystem from the ground up and built a single unified platform to allow end-to-end self service workflows from data ingestion through to analysis. In this episode CEO and co-founder of Isima Darshan Rawal explains how the biOS platform is architected to enable ease of use, the challenges that were involved in building an entirely new system from scratch, and how it can integrate with the rest of your data platform to allow for incremental adoption. This was an interesting and contrarian take on the current state of the data management industry and is worth a listen to gain some additional perspective.

Read More

Self Service Real Time Data Integration Without The Headaches With Meroxa - Episode 153

Analytical workloads require a well engineered and well maintained data integration process to ensure that your information is reliable and up to date. Building a real-time pipeline for your data lakes and data warehouses is a non-trivial effort, requiring a substantial investment of time and energy. Meroxa is a new platform that aims to automate the heavy lifting of change data capture, monitoring, and data loading. In this episode founders DeVaris Brown and Ali Hamidi explain how their tenure at Heroku informed their approach to making data integration self service, how the platform is architected, and how they have designed their system to adapt to the continued evolution of the data ecosystem.

Read More

Simplify Your Data Architecture With The Presto Distributed SQL Engine - Episode 149

Databases are limited in scope to the information that they directly contain. For analytical use cases you often want to combine data across multiple sources and storage locations. This frequently requires cumbersome and time-consuming data integration. To address this problem Martin Traverso and his colleagues at Facebook built the Presto distributed query engine. In this episode he explains how it is designed to allow for querying and combining data where it resides, the use cases that such an architecture unlocks, and the innovative ways that it is being employed at companies across the world. If you need to work with data in your cloud data lake, your on-premise database, or a collection of flat files, then give this episode a listen and then try out Presto today.

Read More

Open Source Production Grade Data Integration With Meltano - Episode 141

The first stage of every data pipeline is extracting the information from source systems. There are a number of platforms for managing data integration, but there is a notable lack of a robust and easy to use open source option. The Meltano project is aiming to provide a solution to that situation. In this episode, project lead Douwe Maan shares the history of how Meltano got started, the motivation for the recent shift in focus, and how it is implemented. The Singer ecosystem has laid the groundwork for a great option to empower teams of all sizes to unlock the value of their Data and Meltano is building the reamining structure to make it a fully featured contender for proprietary systems.

Read More

Mapping The Customer Journey For B2B Companies At Dreamdata - Episode 134

Gaining a complete view of the customer journey is especially difficult in B2B companies. This is due to the number of different individuals involved and the myriad ways that they interface with the business. Dreamdata integrates data from the multitude of platforms that are used by these organizations so that they can get a comprehensive view of their customer lifecycle. In this episode Ole Dallerup explains how Dreamdata was started, how their platform is architected, and the challenges inherent to data management in the B2B space. This conversation is a useful look into how data engineering and analytics can have a direct impact on the success of the business.

Read More

Simplifying Data Integration Through Eventual Connectivity - Episode 91

The ETL pattern that has become commonplace for integrating data from multiple sources has proven useful, but complex to maintain. For a small number of sources it is a tractable problem, but as the overall complexity of the data ecosystem continues to expand it may be time to identify new ways to tame the deluge of information. In this episode Tim Ward, CEO of CluedIn, explains the idea of eventual connectivity as a new paradigm for data integration. Rather than manually defining all of the mappings ahead of time, we can rely on the power of graph databases and some strategic metadata to allow connections to occur as the data becomes available. If you are struggling to maintain a tangle of data pipelines then you might find some new ideas for reducing your workload.

Read More

The Workflow Engine For Data Engineers And Data Scientists - Episode 86

Building a data platform that works equally well for data engineering and data science is a task that requires familiarity with the needs of both roles. Data engineering platforms have a strong focus on stateful execution and tasks that are strictly ordered based on dependency graphs. Data science platforms provide an environment that is conducive to rapid experimentation and iteration, with data flowing directly between stages. Jeremiah Lowin has gained experience in both styles of working, leading him to be frustrated with all of the available tools. In this episode he explains his motivation for creating a new workflow engine that marries the needs of data engineers and data scientists, how it helps to smooth the handoffs between teams working on data projects, and how the design lets you focus on what you care about while it handles the failure cases for you. It is exciting to see a new generation of workflow engine that is learning from the benefits and failures of previous tools for processing your data pipelines.

Read More

Building An Enterprise Data Fabric At CluedIn - Episode 74

Data integration is one of the most challenging aspects of any data platform, especially as the variety of data sources and formats grow. Enterprise organizations feel this acutely due to the silos that occur naturally across business units. The CluedIn team experienced this issue first-hand in their previous roles, leading them to build a business aimed at building a managed data fabric for the enterprise. In this episode Tim Ward, CEO of CluedIn, joins me to explain how their platform is architected, how they manage the task of integrating with third-party platforms, automating entity extraction and master data management, and the work of providing multiple views of the same data for different use cases. I highly recommend listening closely to his explanation of how they manage consistency of the data that they process across different storage backends.

Read More