Data Infrastructure

Easier Stream Processing On Kafka With ksqlDB - Episode 122

Building applications on top of unbounded event streams is a complex endeavor, requiring careful integration of multiple disparate systems that were engineered in isolation. The ksqlDB project was created to address this state of affairs by building a unified layer on top of the Kafka ecosystem for stream processing. Developers can work with the SQL constructs that they are familiar with while automatically getting the durability and reliability that Kafka offers. In this episode Michael Drogalis, product manager for ksqlDB at Confluent, explains how the system is implemented, how you can use it for building your own stream processing applications, and how it fits into the lifecycle of your data infrastructure. If you have been struggling with building services on low level streaming interfaces then give this episode a listen and try it out for yourself.

Read More

Data Infrastructure Automation For Private SaaS At Snowplow - Episode 120

One of the biggest challenges in building reliable platforms for processing event pipelines is managing the underlying infrastructure. At Snowplow Analytics the complexity is compounded by the need to manage multiple instances of their platform across customer environments. In this episode Josh Beemster, the technical operations lead at Snowplow, explains how they manage automation, deployment, monitoring, scaling, and maintenance of their streaming analytics pipeline for event data. He also shares the challenges they face in supporting multiple cloud environments and the need to integrate with existing customer systems. If you are daunted by the needs of your data infrastructure then it’s worth listening to how Josh and his team are approaching the problem.

Read More

The Benefits And Challenges Of Building A Data Trust - Episode 118

Every business collects data in some fashion, but sometimes the true value of the collected information only comes when it is combined with other data sources. Data trusts are a legal framework for allowing businesses to collaboratively pool their data. This allows the members of the trust to increase the value of their individual repositories and gain new insights which would otherwise require substantial effort in duplicating the data owned by their peers. In this episode Tom Plagge and Greg Mundy explain how the BrightHive platform serves to establish and maintain data trusts, the technical and organizational challenges they face, and the outcomes that they have witnessed. If you are curious about data sharing strategies or data collaboratives, then listen now to learn more!

Read More

Planet Scale SQL For The New Generation Of Applications - Episode 115

The modern era of software development is identified by ubiquitous access to elastic infrastructure for computation and easy automation of deployment. This has led to a class of applications that can quickly scale to serve users worldwide. This requires a new class of data storage which can accomodate that demand without having to rearchitect your system at each level of growth. YugabyteDB is an open source database designed to support planet scale workloads with high data density and full ACID compliance. In this episode Karthik Ranganathan explains how Yugabyte is architected, their motivations for being fully open source, and how they simplify the process of scaling your application from greenfield to global.

Read More

Change Data Capture For All Of Your Databases With Debezium - Episode 114

Databases are useful for inspecting the current state of your application, but inspecting the history of that data can get messy without a way to track changes as they happen. Debezium is an open source platform for reliable change data capture that you can use to build supplemental systems for everything from maintaining audit trails to real-time updates of your data warehouse. In this episode Gunnar Morling and Randall Hauch explain why it got started, how it works, and some of the myriad ways that you can use it. If you have ever struggled with implementing your own change data capture pipeline, or understanding when it would be useful then this episode is for you.

Read More

Building The Materialize Engine For Interactive Streaming Analytics In SQL - Episode 112

Transactional databases used in applications are optimized for fast reads and writes with relatively simple queries on a small number of records. Data warehouses are optimized for batched writes and complex analytical queries. Between those use cases there are varying levels of support for fast reads on quickly changing data. To address that need more completely the team at Materialize has created an engine that allows for building queryable views of your data as it is continually updated from the stream of changes being generated by your applications. In this episode Frank McSherry, chief scientist of Materialize, explains why it was created, what use cases it enables, and how it works to provide fast queries on continually updated data.

Read More

SnowflakeDB: The Data Warehouse Built For The Cloud - Episode 110

Data warehouses have gone through many transformations, from standard relational databases on powerful hardware, to column oriented storage engines, to the current generation of cloud-native analytical engines. SnowflakeDB has been leading the charge to take advantage of cloud services that simplify the separation of compute and storage. In this episode Kent Graziano, chief technical evangelist for SnowflakeDB, explains how it is differentiated from other managed platforms and traditional data warehouse engines, the features that allow you to scale your usage dynamically, and how it allows for a shift in your workflow from ETL to ELT. If you are evaluating your options for building or migrating a data platform, then this is definitely worth a listen.

Read More

Automating Your Production Dataflows On Spark - Episode 105

As data engineers the health of our pipelines is our highest priority. Unfortunately, there are countless ways that our dataflows can break or degrade that have nothing to do with the business logic or data transformations that we write and maintain. Sean Knapp founded Ascend to address the operational challenges of running a production grade and scalable Spark infrastructure, allowing data engineers to focus on the problems that power their business. In this episode he explains the technical implementation of the Ascend platform, the challenges that he has faced in the process, and how you can use it to simplify your dataflow automation. This is a great conversation to get an understanding of all of the incidental engineering that is necessary to make your data reliable.

Read More

Data Orchestration For Hybrid Cloud Analytics - Episode 103

The scale and complexity of the systems that we build to satisfy business requirements is increasing as the available tools become more sophisticated. In order to bridge the gap between legacy infrastructure and evolving use cases it is necessary to create a unifying set of components. In this episode Dipti Borkar explains how the emerging category of data orchestration tools fills this need, some of the existing projects that fit in this space, and some of the ways that they can work together to simplify projects such as cloud migration and hybrid cloud environments. It is always useful to get a broad view of new trends in the industry and this was a helpful perspective on the need to provide mechanisms to decouple physical storage from computing capacity.

Read More