Data Collection

Closing The Loop On Event Data Collection With Iteratively - Episode 145

Event based data is a rich source of information for analytics, unless none of the event structures are consistent. The team at Iteratively are building a platform to manage the end to end flow of collaboration around what events are needed, how to structure the attributes, and how they are captured. In this episode founders Patrick Thompson and Ondrej Hrebicek discuss the problems that they have experienced as a result of inconsistent event schemas, how the Iteratively platform integrates the definition, development, and delivery of event data, and the benefits of elevating the visibility of event data collection for improving the effectiveness of the resulting analytics. If you are struggling with inconsistent implementations of event data capture, lack of clarity on what attributes are needed, and how it is being used then this is definitely a conversation worth following.

Read More

Making Wind Energy More Efficient With Data At Turbit Systems - Episode 142

Wind energy is an important component of an ecologically friendly power system, but there are a number of variables that can affect the overall efficiency of the turbines. Michael Tegtmeier founded Turbit Systems to help operators of wind farms identify and correct problems that contribute to suboptimal power outputs. In this episode he shares the story of how he got started working with wind energy, the system that he has built to collect data from the individual turbines, and how he is using machine learning to provide valuable insights to produce higher energy outputs. This was a great conversation about using data to improve the way the world works.

Read More

Data Collection And Management For Teaching Machines To Hear At Audio Analytic - Episode 139

We have machines that can listen to and process human speech in a variety of languages, but dealing with unstructured sounds in our environment is a much greater challenge. The team at Audio Analytic are working to impart a sense of hearing to our myriad devices with their sound recognition technology. In this episode Dr. Chris Mitchell and Dr. Thomas le Cornu describe the challenges that they are faced with in the collection and labelling of high quality data to make this possible, including the lack of a publicly available collection of audio samples to work from, the need for custom metadata throughout the processing pipeline, and the need for customized data processing tools for working with sound data. This was a great conversation about the complexities of working in a niche domain of data analysis and how to build a pipeline of high quality data from collection to analysis.

Read More