Companies

Cloud Native Data Security As Code With Cyral - Episode 156

One of the most challenging aspects of building a data platform has nothing to do with pipelines and transformations. If you are putting your workflows into production, then you need to consider how you are going to implement data security, including access controls and auditing. Different databases and storage systems all have their own method of restricting access, and they are not all compatible with each other. In order to simplify the process of securing your data in the Cloud Manav Mital created Cyral to provide a way of enforcing security as code. In this episode he explains how the system is architected, how it can help you enforce compliance, and what is involved in getting it integrated with your existing systems. This was a good conversation about an aspect of data management that is too often left as an afterthought.

Read More

Better Data Quality Through Observability With Monte Carlo - Episode 155

In order for analytics and machine learning projects to be useful, they require a high degree of data quality. To ensure that your pipelines are healthy you need a way to make them observable. In this episode Barr Moses and Lior Gavish, co-founders of Monte Carlo, share the leading causes of what they refer to as data downtime and how it manifests. They also discuss methods for gaining visibility into the flow of data through your infrastructure, how to diagnose and prevent potential problems, and what they are building at Monte Carlo to help you maintain your data’s uptime.

Read More

Rapid Delivery Of Business Intelligence Using Power BI - Episode 154

Business intelligence efforts are only as useful as the outcomes that they inform. Power BI aims to reduce the time and effort required to go from information to action by providing an interface that encourages rapid iteration. In this episode Rob Collie shares his enthusiasm for the Power BI platform and how it stands out from other options. He explains how he helped to build the platform during his time at Microsoft, and how he continues to support users through his work at Power Pivot Pro. Rob shares some useful insights gained through his consulting work, and why he considers Power BI to be the best option on the market today for business analytics.

Read More

Self Service Real Time Data Integration Without The Headaches With Meroxa - Episode 153

Analytical workloads require a well engineered and well maintained data integration process to ensure that your information is reliable and up to date. Building a real-time pipeline for your data lakes and data warehouses is a non-trivial effort, requiring a substantial investment of time and energy. Meroxa is a new platform that aims to automate the heavy lifting of change data capture, monitoring, and data loading. In this episode founders DeVaris Brown and Ali Hamidi explain how their tenure at Heroku informed their approach to making data integration self service, how the platform is architected, and how they have designed their system to adapt to the continued evolution of the data ecosystem.

Read More

Speed Up And Simplify Your Streaming Data Workloads With Red Panda - Episode 152

Kafka has become a de facto standard interface for building decoupled systems and working with streaming data. Despite its widespread popularity, there are numerous accounts of the difficulty that operators face in keeping it reliable and performant, or trying to scale an installation. To make the benefits of the Kafka ecosystem more accessible and reduce the operational burden, Alexander Gallego and his team at Vectorized created the Red Panda engine. In this episode he explains how they engineered a drop-in replacement for Kafka, replicating the numerous APIs, that can scale more easily and deliver consistently low latencies with a much lower hardware footprint. He also shares some of the areas of innovation that they have found to help foster the next wave of streaming applications while working within the constraints of the existing Kafka interfaces. This was a fascinating conversation with an energetic and enthusiastic engineer and founder about the challenges and opportunities in the realm of streaming data.

Read More

Distributed In Memory Processing And Streaming With Hazelcast - Episode 150

In memory computing provides significant performance benefits, but brings along challenges for managing failures and scaling up. Hazelcast is a platform for managing stateful in-memory storage and computation across a distributed cluster of commodity hardware. On top of this foundation, the Hazelcast team has also built a streaming platform for reliable high throughput data transmission. In this episode Dale Kim shares how Hazelcast is implemented, the use cases that it enables, and how it complements on-disk data management systems.

Read More

Building A Better Data Warehouse For The Cloud At Firebolt - Episode 148

Data warehouse technology has been around for decades and has gone through several generational shifts in that time. The current trends in data warehousing are oriented around cloud native architectures that take advantage of dynamic scaling and the separation of compute and storage. Firebolt is taking that a step further with a core focus on speed and interactivity. In this episode CEO and founder Eldad Farkash explains how the Firebolt platform is architected for high throughput, their simple and transparent pricing model to encourage widespread use, and the use cases that it unlocks through interactive query speeds.

Read More

Exploring The TileDB Universal Data Engine - Episode 146

Most databases are designed to work with textual data, with some special purpose engines that support domain specific formats. TileDB is a data engine that was built to support every type of data by using multi-dimensional arrays as the foundational primitive. In this episode the creator and founder of TileDB shares how he first started working on the underlying technology and the benefits of using a single engine for efficiently storing and querying any form of data. He also discusses the shifts in database architectures from vertically integrated monoliths to separately deployed layers, and the approach he is taking with TileDB cloud to embed the authorization into the storage engine, while providing a flexible interface for compute. This was a great conversation about a different approach to database architecture and how that enables a more flexible way to store and interact with data to power better data sharing and new opportunities for blending specialized domains.

Read More

Closing The Loop On Event Data Collection With Iteratively - Episode 145

Event based data is a rich source of information for analytics, unless none of the event structures are consistent. The team at Iteratively are building a platform to manage the end to end flow of collaboration around what events are needed, how to structure the attributes, and how they are captured. In this episode founders Patrick Thompson and Ondrej Hrebicek discuss the problems that they have experienced as a result of inconsistent event schemas, how the Iteratively platform integrates the definition, development, and delivery of event data, and the benefits of elevating the visibility of event data collection for improving the effectiveness of the resulting analytics. If you are struggling with inconsistent implementations of event data capture, lack of clarity on what attributes are needed, and how it is being used then this is definitely a conversation worth following.

Read More

Making Wind Energy More Efficient With Data At Turbit Systems - Episode 142

Wind energy is an important component of an ecologically friendly power system, but there are a number of variables that can affect the overall efficiency of the turbines. Michael Tegtmeier founded Turbit Systems to help operators of wind farms identify and correct problems that contribute to suboptimal power outputs. In this episode he shares the story of how he got started working with wind energy, the system that he has built to collect data from the individual turbines, and how he is using machine learning to provide valuable insights to produce higher energy outputs. This was a great conversation about using data to improve the way the world works.

Read More