Using Notebooks As The Unifying Layer For Data Roles At Netflix with Matthew Seal - Episode 54

Jupyter notebooks have gained popularity among data scientists as an easy way to do exploratory analysis and build interactive reports. However, this can cause difficulties when trying to move the work of the data scientist into a more standard production environment, due to the translation efforts that are necessary. At Netflix they had the crazy idea that perhaps that last step isn’t necessary, and the production workflows can just run the notebooks directly. Matthew Seal is one of the primary engineers who has been tasked with building the tools and practices that allow the various data oriented roles to unify their work around notebooks. In this episode he explains the rationale for the effort, the challenges that it has posed, the development that has been done to make it work, and the benefits that it provides to the Netflix data platform teams.

Building A Knowledge Graph From Public Data At Enigma With Chris Groskopf - Episode 50

There are countless sources of data that are publicly available for use. Unfortunately, combining those sources and making them useful in aggregate is a time consuming and challenging process. The team at Enigma builds a knowledge graph for use in your own data projects. In this episode Chris Groskopf explains the platform they have built to consume large varieties and volumes of public data for constructing a graph for serving to their customers. He discusses the challenges they are facing to scale the platform and engineering processes, as well as the workflow that they have established to enable testing of their ETL jobs. This is a great episode to listen to for ideas on how to organize a data engineering organization.

Putting Airflow Into Production With James Meickle - Episode 43

The theory behind how a tool is supposed to work and the realities of putting it into practice are often at odds with each other. Learning the pitfalls and best practices from someone who has gained that knowledge the hard way can save you from wasted time and frustration. In this episode James Meickle discusses his recent experience building a new installation of Airflow. He points out the strengths, design flaws, and areas of improvement for the framework. He also describes the design patterns and workflows that his team has built to allow them to use Airflow as the basis of their data science platform.

User Analytics In Depth At Heap with Dan Robinson - Episode 36

Web and mobile analytics are an important part of any business, and difficult to get right. The most frustrating part is when you realize that you haven’t been tracking a key interaction, having to write custom logic to add that event, and then waiting to collect data. Heap is a platform that automatically tracks every event so that you can retroactively decide which actions are important to your business and easily build reports with or without SQL. In this episode Dan Robinson, CTO of Heap, describes how they have architected their data infrastructure, how they build their tracking agents, and the data virtualization layer that enables users to define their own labels.

ThreatStack: Data Driven Cloud Security with Pete Cheslock and Patrick Cable - Episode 25

Cloud computing and ubiquitous virtualization have changed the ways that our applications are built and deployed. This new environment requires a new way of tracking and addressing the security of our systems. ThreatStack is a platform that collects all of the data that your servers generate and monitors for unexpected anomalies in behavior that would indicate a breach and notifies you in near-realtime. In this episode ThreatStack’s director of operations, Pete Cheslock, and senior infrastructure security engineer, Patrick Cable, discuss the data infrastructure that supports their platform, how they capture and process the data from client systems, and how that information can be used to keep your systems safe from attackers.

Honeycomb Data Infrastructure with Sam Stokes - Episode 20

One of the sources of data that often gets overlooked is the systems that we use to run our businesses. This data is not used to directly provide value to customers or understand the functioning of the business, but it is still a critical component of a successful system. Sam Stokes is an engineer at Honeycomb where he helps to build a platform that is able to capture all of the events and context that occur in our production environments and use them to answer all of your questions about what is happening in your system right now. In this episode he discusses the challenges inherent in capturing and analyzing event data, the tools that his team is using to make it possible, and how this type of knowledge can be used to improve your critical infrastructure.

data.world with Bryon Jacob - Episode 9

We have tools and platforms for collaborating on software projects and linking them together, wouldn’t it be nice to have the same capabilities for data? The team at data.world are working on building a platform to host and share data sets for public and private use that can be linked together to build a semantic web of information. The CTO, Bryon Jacob, discusses how the company got started, their mission, and how they have built and evolved their technical infrastructure.

Rebuilding Yelp's Data Pipeline with Justin Cunningham - Episode 5

Yelp needs to be able to consume and process all of the user interactions that happen in their platform in as close to real-time as possible. To achieve that goal they embarked on a journey to refactor their monolithic architecture to be more modular and modern, and then they open sourced it! In this episode Justin Cunningham joins me to discuss the decisions they made and the lessons they learned in the process, including what worked, what didn’t, and what he would do differently if he was starting over today.