Artificial Intelligence

Deep Learning For Data Engineers - Episode 71

Summary

Deep learning is the latest class of technology that is gaining widespread interest. As data engineers we are responsible for building and managing the platforms that power these models. To help us understand what is involved, we are joined this week by Thomas Henson. In this episode he shares his experiences experimenting with deep learning, what data engineers need to know about the infrastructure and data requirements to power the models that your team is building, and how it can be used to supercharge our ETL pipelines.

Announcements

  • Hello and welcome to the Data Engineering Podcast, the show about modern data management
  • When you’re ready to build your next pipeline, or want to test out the projects you hear about on the show, you’ll need somewhere to deploy it, so check out our friends at Linode. With 200Gbit private networking, scalable shared block storage, and a 40Gbit public network, you’ve got everything you need to run a fast, reliable, and bullet-proof data platform. If you need global distribution, they’ve got that covered too with world-wide datacenters including new ones in Toronto and Mumbai. Go to dataengineeringpodcast.com/linode today to get a $20 credit and launch a new server in under a minute. And don’t forget to thank them for their continued support of this show!
  • Managing and auditing access to your servers and databases is a problem that grows in difficulty alongside the growth of your teams. If you are tired of wasting your time cobbling together scripts and workarounds to give your developers, data scientists, and managers the permissions that they need then it’s time to talk to our friends at strongDM. They have built an easy to use platform that lets you leverage your company’s single sign on for your data platform. Go to dataengineeringpodcast.com/strongdm today to find out how you can simplify your systems.
  • Go to dataengineeringpodcast.com to subscribe to the show, sign up for the mailing list, read the show notes, and get in touch.
  • To help other people find the show please leave a review on iTunes, or Google Play Music, tell your friends and co-workers, and share it on social media.
  • Join the community in the new Zulip chat workspace at dataengineeringpodcast.com/chat
  • You listen to this show to learn and stay up to date with what’s happening in databases, streaming platforms, big data, and everything else you need to know about modern data platforms. For even more opportunities to meet, listen, and learn from your peers you don’t want to miss the Strata conference in San Francisco on March 25th and the Artificial Intelligence conference in NYC on April 15th, both run by our friends at O’Reilly Media. Go to dataengineeringpodcast.com/stratacon and dataengineeringpodcast.com/aicon to register today and get 20% off
  • Your host is Tobias Macey and today I’m interviewing Thomas Henson about what data engineers need to know about deep learning, including how to use it for their own projects

Interview

  • Introduction
  • How did you get involved in the area of data management?
  • Can you start by giving an overview of what deep learning is for anyone who isn’t familiar with it?
  • What has been your personal experience with deep learning and what set you down that path?
  • What is involved in building a data pipeline and production infrastructure for a deep learning product?
    • How does that differ from other types of analytics projects such as data warehousing or traditional ML?
  • For anyone who is in the early stages of a deep learning project, what are some of the edge cases or gotchas that they should be aware of?
  • What are your opinions on the level of involvement/understanding that data engineers should have with the analytical products that are being built with the information we collect and curate?
  • What are some ways that we can use deep learning as part of the data management process?
    • How does that shift the infrastructure requirements for our platforms?
  • Cloud providers have been releasing numerous products to provide deep learning and/or GPUs as a managed platform. What are your thoughts on that layer of the build vs buy decision?
  • What is your litmus test for whether to use deep learning vs explicit ML algorithms or a basic decision tree?
    • Deep learning algorithms are often a black box in terms of how decisions are made, however regulations such as GDPR are introducing requirements to explain how a given decision gets made. How does that factor into determining what approach to take for a given project?
  • For anyone who wants to learn more about deep learning, what are some resources that you recommend?

Contact Info

Parting Question

  • From your perspective, what is the biggest gap in the tooling or technology for data management today?

Links

The intro and outro music is from The Hug by The Freak Fandango Orchestra / CC BY-SA

Building Machine Learning Projects In The Enterprise - Episode 69

Summary

Machine learning is a class of technologies that promise to revolutionize business. Unfortunately, it can be difficult to identify and execute on ways that it can be used in large companies. Kevin Dewalt founded Prolego to help Fortune 500 companies build, launch, and maintain their first machine learning projects so that they can remain competitive in our landscape of constant change. In this episode he discusses why machine learning projects require a new set of capabilities, how to build a team from internal and external candidates, and how an example project progressed through each phase of maturity. This was a great conversation for anyone who wants to understand the benefits and tradeoffs of machine learning for their own projects and how to put it into practice.

Introduction

  • Hello and welcome to the Data Engineering Podcast, the show about modern data management
  • When you’re ready to build your next pipeline, or want to test out the projects you hear about on the show, you’ll need somewhere to deploy it, so check out Linode. With 200Gbit private networking, scalable shared block storage, and a 40Gbit public network, you’ve got everything you need to run a fast, reliable, and bullet-proof data platform. If you need global distribution, they’ve got that covered too with world-wide datacenters including new ones in Toronto and Mumbai. Go to dataengineeringpodcast.com/linode today to get a $20 credit and launch a new server in under a minute.
  • Go to dataengineeringpodcast.com to subscribe to the show, sign up for the mailing list, read the show notes, and get in touch.
  • To help other people find the show please leave a review on iTunes, or Google Play Music, tell your friends and co-workers, and share it on social media.
  • Join the community in the new Zulip chat workspace at dataengineeringpodcast.com/chat
  • Your host is Tobias Macey and today I’m interviewing Kevin Dewalt about his experiences at Prolego, building machine learning projects for Fortune 500 companies

Interview

  • Introduction
  • How did you get involved in the area of data management?
  • For the benefit of software engineers and team leaders who are new to machine learning, can you briefly describe what machine learning is and why is it relevant to them?
  • What is your primary mission at Prolego and how did you identify, execute on, and establish a presence in your particular market?
    • How much of your sales process is spent on educating your clients about what AI or ML are and the benefits that these technologies can provide?
  • What have you found to be the technical skills and capacity necessary for being successful in building and deploying a machine learning project?
    • When engaging with a client, what have you found to be the most common areas of technical capacity or knowledge that are needed?
  • Everyone talks about a talent shortage in machine learning. Can you suggest a recruiting or skills development process for companies which need to build out their data engineering practice?
  • What challenges will teams typically encounter when creating an efficient working relationship between data scientists and data engineers?
  • Can you briefly describe a successful project of developing a first ML model and putting it into production?
    • What is the breakdown of how much time was spent on different activities such as data wrangling, model development, and data engineering pipeline development?
    • When releasing to production, can you share the types of metrics that you track to ensure the health and proper functioning of the models?
    • What does a deployable artifact for a machine learning/deep learning application look like?
  • What basic technology stack is necessary for putting the first ML models into production?
    • How does the build vs. buy debate break down in this space and what products do you typically recommend to your clients?
  • What are the major risks associated with deploying ML models and how can a team mitigate them?
  • Suppose a software engineer wants to break into ML. What data engineering skills would you suggest they learn? How should they position themselves for the right opportunity?

Contact Info

Parting Question

  • From your perspective, what is the biggest gap in the tooling or technology for data management today?

Links

The intro and outro music is from The Hug by The Freak Fandango Orchestra / CC BY-SA

Of Checklists, Ethics, and Data with Emily Miller and Peter Bull (Cross Post from Podcast.__init__) - Episode 53

Summary

As data science becomes more widespread and has a bigger impact on the lives of people, it is important that those projects and products are built with a conscious consideration of ethics. Keeping ethical principles in mind throughout the lifecycle of a data project helps to reduce the overall effort of preventing negative outcomes from the use of the final product. Emily Miller and Peter Bull of Driven Data have created Deon to improve the communication and conversation around ethics among and between data teams. It is a Python project that generates a checklist of common concerns for data oriented projects at the various stages of the lifecycle where they should be considered. In this episode they discuss their motivation for creating the project, the challenges and benefits of maintaining such a checklist, and how you can start using it today.

Preamble

  • Hello and welcome to the Data Engineering Podcast, the show about modern data management
  • When you’re ready to build your next pipeline you’ll need somewhere to deploy it, so check out Linode. With private networking, shared block storage, node balancers, and a 40Gbit network, all controlled by a brand new API you’ve got everything you need to run a bullet-proof data platform. Go to dataengineeringpodcast.com/linode to get a $20 credit and launch a new server in under a minute.
  • Go to dataengineeringpodcast.com to subscribe to the show, sign up for the mailing list, read the show notes, and get in touch.
  • Join the community in the new Zulip chat workspace at dataengineeringpodcast.com/chat
  • This is your host Tobias Macey and this week I am sharing an episode from my other show, Podcast.__init__, about a project from Driven Data called Deon. It is a simple tool that generates a checklist of ethical considerations for the various stages of the lifecycle for data oriented projects. This is an important topic for all of the teams involved in the management and creation of projects that leverage data. So give it a listen and if you like what you hear, be sure to check out the other episodes at pythonpodcast.com

Interview

  • Introductions
  • How did you get introduced to Python?
  • Can you start by describing what Deon is and your motivation for creating it?
  • Why a checklist, specifically? What’s the advantage of this over an oath, for example?
  • What is unique to data science in terms of the ethical concerns, as compared to traditional software engineering?
  • What is the typical workflow for a team that is using Deon in their projects?
  • Deon ships with a default checklist but allows for customization. What are some common addendums that you have seen?
    • Have you received pushback on any of the default items?
  • How does Deon simplify communication around ethics across team boundaries?
  • What are some of the most often overlooked items?
  • What are some of the most difficult ethical concerns to comply with for a typical data science project?
  • How has Deon helped you at Driven Data?
  • What are the customer facing impacts of embedding a discussion of ethics in the product development process?
  • Some of the items on the default checklist coincide with regulatory requirements. Are there any cases where regulation is in conflict with an ethical concern that you would like to see practiced?
  • What are your hopes for the future of the Deon project?

Keep In Touch

Picks

Links

The intro and outro music is from Requiem for a Fish The Freak Fandango Orchestra / CC BY-SA

Leveraging Human Intelligence For Better AI At Alegion With Cheryl Martin - Episode 38

Summary

Data is often messy or incomplete, requiring human intervention to make sense of it before being usable as input to machine learning projects. This is problematic when the volume scales beyond a handful of records. In this episode Dr. Cheryl Martin, Chief Data Scientist for Alegion, discusses the importance of properly labeled information for machine learning and artificial intelligence projects, the systems that they have built to scale the process of incorporating human intelligence in the data preparation process, and the challenges inherent to such an endeavor.

Preamble

  • Hello and welcome to the Data Engineering Podcast, the show about modern data management
  • When you’re ready to build your next pipeline you’ll need somewhere to deploy it, so check out Linode. With private networking, shared block storage, node balancers, and a 40Gbit network, all controlled by a brand new API you’ve got everything you need to run a bullet-proof data platform. Go to dataengineeringpodcast.com/linode to get a $20 credit and launch a new server in under a minute.
  • Are you struggling to keep up with customer request and letting errors slip into production? Want to try some of the innovative ideas in this podcast but don’t have time? DataKitchen’s DataOps software allows your team to quickly iterate and deploy pipelines of code, models, and data sets while improving quality. Unlike a patchwork of manual operations, DataKitchen makes your team shine by providing an end to end DataOps solution with minimal programming that uses the tools you love. Join the DataOps movement and sign up for the newsletter at datakitchen.io/de today. After that learn more about why you should be doing DataOps by listening to the Head Chef in the Data Kitchen at dataengineeringpodcast.com/datakitchen
  • Go to dataengineeringpodcast.com to subscribe to the show, sign up for the mailing list, read the show notes, and get in touch.
  • Your host is Tobias Macey and today I’m interviewing Cheryl Martin, chief data scientist at Alegion, about data labelling at scale

Interview

  • Introduction
  • How did you get involved in the area of data management?
  • To start, can you explain the problem space that Alegion is targeting and how you operate?
  • When is it necessary to include human intelligence as part of the data lifecycle for ML/AI projects?
  • What are some of the biggest challenges associated with managing human input to data sets intended for machine usage?
  • For someone who is acting as human-intelligence provider as part of the workforce, what does their workflow look like?
    • What tools and processes do you have in place to ensure the accuracy of their inputs?
    • How do you prevent bad actors from contributing data that would compromise the trained model?
  • What are the limitations of crowd-sourced data labels?
    • When is it beneficial to incorporate domain experts in the process?
  • When doing data collection from various sources, how do you ensure that intellectual property rights are respected?
  • How do you determine the taxonomies to be used for structuring data sets that are collected, labeled or enriched for your customers?
    • What kinds of metadata do you track and how is that recorded/transmitted?
  • Do you think that human intelligence will be a necessary piece of ML/AI forever?

Contact Info

Parting Question

  • From your perspective, what is the biggest gap in the tooling or technology for data management today?

Links

The intro and outro music is from The Hug by The Freak Fandango Orchestra / CC BY-SA